Spelling suggestions: "subject:"finishing viscosity"" "subject:"diminishing viscosity""
1 |
Error Estimates for Entropy Solutions to Scalar Conservation Laws with Continuous Flux FunctionsMoses, Lawrenzo D. January 2012 (has links)
No description available.
|
2 |
Hyperbolic problems in fluids and relativitySchrecker, Matthew January 2018 (has links)
In this thesis, we present a collection of newly obtained results concerning the existence of vanishing viscosity solutions to the one-dimensional compressible Euler equations of gas dynamics, with and without geometric structure. We demonstrate the existence of such vanishing viscosity solutions, which we show to be entropy solutions, to the transonic nozzle problem and spherically symmetric Euler equations in Chapter 4, in both cases under the simple and natural assumption of relative finite-energy. In Chapter 5, we show that the viscous solutions of the one-dimensional compressible Navier-Stokes equations converge, as the viscosity tends to zero, to an entropy solution of the Euler equations, again under the assumption of relative finite-energy. In so doing, we develop a compactness framework for the solutions and approximate solutions to the Euler equations under the assumption of a physical pressure law. Finally, in Chapter 6, we consider the Euler equations in special relativity, and show the existence of bounded entropy solutions to these equations. In the process, we also construct fundamental solutions to the entropy equations and develop a compactness framework for the solutions and approximate solutions to the relativistic Euler equations.
|
3 |
Analysis of several non-linear PDEs in fluid mechanics and differential geometryLi, Siran January 2017 (has links)
In the thesis we investigate two problems on Partial Differential Equations (PDEs) in differential geometry and fluid mechanics. First, we prove the weak L<sup> p</sup> continuity of the Gauss-Codazzi-Ricci (GCR) equations, which serve as a compatibility condition for the isometric immersions of Riemannian and semi-Riemannian manifolds. Our arguments, based on the generalised compensated compactness theorems established via functional and micro-local analytic methods, are intrinsic and global. Second, we prove the vanishing viscosity limit of an incompressible fluid in three-dimensional smooth, curved domains, with the kinematic and Navier boundary conditions. It is shown that the strong solution of the Navier-Stokes equation in H<sup> r+1</sup> (r > 5/2) converges to the strong solution of the Euler equation with the kinematic boundary condition in H<sup> r</sup>, as the viscosity tends to zero. For the proof, we derive energy estimates using the special geometric structure of the Navier boundary conditions; in particular, the second fundamental form of the fluid boundary and the vorticity thereon play a crucial role. In these projects we emphasise the linkages between the techniques in differential geometry and mathematical hydrodynamics.
|
4 |
Simula??es num?ricas de correntes gravitacionais com elevado n?mero de ReynoldsFrantz, Ricardo Andr? Schuh 09 March 2018 (has links)
Submitted by PPG Engenharia e Tecnologia de Materiais (engenharia.pg.materiais@pucrs.br) on 2018-06-05T13:28:29Z
No. of bitstreams: 1
frantz2018simulacoes.pdf: 23131075 bytes, checksum: e748910d1820968a07c86be9461b7489 (MD5) / Approved for entry into archive by Sheila Dias (sheila.dias@pucrs.br) on 2018-06-12T12:40:17Z (GMT) No. of bitstreams: 1
frantz2018simulacoes.pdf: 23131075 bytes, checksum: e748910d1820968a07c86be9461b7489 (MD5) / Made available in DSpace on 2018-06-12T12:49:08Z (GMT). No. of bitstreams: 1
frantz2018simulacoes.pdf: 23131075 bytes, checksum: e748910d1820968a07c86be9461b7489 (MD5)
Previous issue date: 2018-03-09 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / This work investigates the method of large-eddy simulation (LES) in the context
of gravity currents, which is found necessary since it allows a substantial increase
in the order of magnitude of the characteristic Reynolds number used in numerical
simulations, approaching them with natural scales, in addition to significantly reducing
the computational cost. The implicit large eddy simulation (ILES) methodology, based
on the spectral vanishing viscosity model, is unprecedentedly employed in the context
of gravity currents, is compared against with explicit methods such as the static and
dynamic Smagorisnky. The evaluation of the models is performed based on statistics
from a direct numerical simulation (DNS). Results demonstrate that the first model
based purely on numerical dissipation, introduced by means of the second order
derivative, generates better correlations with the direct simulation. Finally, experimental
cases of the literature, in different flow configurations, are reproduced numerically
showing good agreement in terms of the front position evolution. / Este trabalho investiga o m?todo de simula??o de grandes escalas (LES) no
contexto de correntes gravitacionais. O mesmo se faz necess?rio, visto que possibilita
um aumento substancial da ordem de grandeza do n?mero de Reynolds caracter?stico
utilizado em simula??es num?ricas, aproximando os mesmos de escalas naturais, al?m
de reduzir significativamente o custo computacional dos c?lculos. A avalia??o dos
modelos ? realizada utilizando uma base de dados de simula??o num?rica direta (DNS).
A metodologia de simula??o de grandes escalas impl?cita (ILES), baseada no modelo
de viscosidade turbulenta espectral, ? colocado a prova de maneira in?dita no contexto
de correntes de gravidade com m?todos expl?citos dispon?veis na literatura. Resultados
demonstram que o mesmo, baseado puramente em dissipa??o num?rica introduzida
por meio do comportamento dos esquemas de derivada de segunda ordem, gera
melhores correla??es com as estat?sticas baseadas em campos m?dios da simula??o
direta. Por fim, casos experimentais da literatura, em diferentes configura??es de
escoamento, s?o reproduzidos numericamente.
|
5 |
Strömungsbeeinflussung in Flüssigmetallen durch rotierende und wandernde MagnetfelderKoal, Kristina 29 June 2011 (has links) (PDF)
Ziel der vorliegenden Arbeit ist es, Rühr- und Mischungsvorgänge in Flüssigmetallströmungen zu untersuchen, die mittels rotierender und wandernder Magnetfelder bzw. deren Kombination induziert werden. Im Mittelpunkt steht dabei die Charakterisierung der dreidimensionalen Strömungsstrukturen innerhalb zylindrischer Geometrien bei der Verwendung überkritischer Magnetfelder.
Neben der Untersuchung der Strömungseigenschaften stellen die physikalische Modellierung der angreifenden Kräfte, die geeignete Wahl und Validierung eines effizienten numerischen Lösungsverfahrens und dessen Erweiterung für die Durchführung von Large Eddy Simulationen wesentliche Eckpfeiler dieser Arbeit dar.
|
6 |
Strömungsbeeinflussung in Flüssigmetallen durch rotierende und wandernde MagnetfelderKoal, Kristina 27 May 2011 (has links)
Ziel der vorliegenden Arbeit ist es, Rühr- und Mischungsvorgänge in Flüssigmetallströmungen zu untersuchen, die mittels rotierender und wandernder Magnetfelder bzw. deren Kombination induziert werden. Im Mittelpunkt steht dabei die Charakterisierung der dreidimensionalen Strömungsstrukturen innerhalb zylindrischer Geometrien bei der Verwendung überkritischer Magnetfelder.
Neben der Untersuchung der Strömungseigenschaften stellen die physikalische Modellierung der angreifenden Kräfte, die geeignete Wahl und Validierung eines effizienten numerischen Lösungsverfahrens und dessen Erweiterung für die Durchführung von Large Eddy Simulationen wesentliche Eckpfeiler dieser Arbeit dar.
|
Page generated in 0.0919 seconds