1 |
Simulation of energy and water exchanges between vegetated surfaces and the atmosphereAlvarenga Alves, Marco 10 February 2024 (has links)
Les échanges de chaleur et de vapeur d’eau ont lieu à l’interface terre-atmosphère. Une représentation précise de ces flux est nécessaire dans les modèles atmosphériques et hydrologiques, compte tenu de leur importance dans la régulation des cycles climatiques et hydrologiques. À cette fin, des modèles de surface terrestre (MST) ont été construits pour fournir des informations pertinentes sur les conditions de surface terrestre, et plus spécifiquement, sur les échanges d’énergie, d’eau et parfois de carbone. Dans cette thèse, l’objectif principal est de mieux comprendre les différents processus conduisant au transfert d’énergie et d’eau à travers l’interface sol-végétation-atmosphère, ainsi que d’évaluer la simulation des échanges d’énergie et d’eau par des MST pilotés par des forçages météorologiques de différentes sources. Premièrement, deux différentes philosophies de modélisation de la surface terrestre ont été contrastées sur des sites sans neige à travers le monde. Les performances d’une approche basée sur la répartition statistique de l’énergie de surface, le modèle « Maximum Entropy Production » (MEP), ont été comparées à celles d’un MST à base physique, le « Canadian Land Surface Scheme » (CLASS). Le modèle MEP propose une approche simplifiée pour estimer les flux thermiques de surface tout en imposant la conservation d’énergie. Par conséquent, ce modèle semble approprié pour une intégration dans les études hydrologiques et de télédétection, où les quelques données d’entrée requises peuvent être facilement récupérées, et lorsque l’estimation des flux de chaleur de surface est l’objectif principal. En général, l’approche MEP était comparable aux mesures in situ et aux résultats CLASS. Bien que MEP utilise une formulation simple et moins de variables d’entrée, le modèle était comparable ou même meilleur que les simulations du modèle CLASS. Cependant, le modèle de surface était moins performant pour simuler les flux turbulents nocturnes et le flux de chaleur du sol dans son ensemble. Deuxièmement, CLASS a été appliqué à une échelle locale pour évaluer ses performances lorsqu’il est piloté par les données de réanalyse ERA5. L’énergie de surface simulée et les flux d’eau, ainsi que le manteau neigeux et les propriétés du sol, ont été étudiés dans quatre sites différents distribués sur le biome boréal canadien. Les résultats de CLASS pilotés par ERA5 ont été comparés aux observations in situ disponibles, ainsi qu’aux résultats de CLASS pilotés par des observations; des simulations et des analyses supplémentaires ont été menées pour évaluer les effets des biais dans les précipitations d’ERA5. Cette analyse a mis en évidence la iii capacité de CLASS à représenter les variables de la surface terrestre des sites boréaux lorsqu’il est forcé par la réanalyse ERA5, montrant une grande similitude avec les observations et avec les résultats de CLASS pilotés par les observations. Bien que la réanalyse ERA5 ait une résolution relativement grossière, les données peuvent toujours être utilisées pour piloter un MST et produire des résultats cohérents à une échelle locale. Enfin, nous avons évalué la fiabilité du modèle CLASS dans la simulation de l’évapotranspiration (ET) et du ruissellement (ROF) lorsqu’il est forcé par des données stochastiques, produites par un modèle générateur de temps à l’échelle horaire, sur deux sites boréaux canadiens avec une disponibilité d’eau contrastée (un site sec et un site humide). Les résultats ont été comparés aux flux d’eau simulés par CLASS forcés avec des données de référence (ERA5). Cette étude s’est concentrée sur la variation interannuelle et saisonnière des flux d’eau, ainsi que sur leurs périodes de retour de valeurs journalières extrêmes. Sur le site sec, l’ET et le ROF simulés par CLASS forcé avec les données stochastiques et de référence étaient similaires les uns aux autres; les deux simulations ont montré que l’ET et le ROF annuels sont limités par la disponibilité en eau. Sur le site humide, cependant, les résultats des deux simulations ont montré des écarts importants. CLASS piloté par les données stochastiques n’a pas pu capturer la signature d’ET, qui se situe globalement entre 550 mm an−1 et 600 mm an−1 , et elle n’est pas limitée par l’eau. Les précipitations, la température et l’humidité spécifique se sont révélées être les variables critiques dans la simulation des flux d’eau. De plus, les événements journaliers extrêmes de précipitations stochastiques et de ROF simulés par CLASS forcé avec les données stochastiques se sont révélés fiables sur les deux sites, révélant une excellente occasion d’utiliser cette méthode pour évaluer les ressources en eau dans un scénario de changement climatique. En conclusion, cette thèse s’est concentrée sur la modélisation de la surface terrestre sur plusieurs sites végétalisés, en mettant l’accent sur les échanges d’énergie et d’eau entre la surface terrestre et l’atmosphère. Les résultats ont permis d’apporter des perspectives de travaux futurs en ce qui concerne (i) l’utilisation d’une approche simplifiée pour estimer les flux thermiques de surface ; (ii) l’utilisation de la réanalyse ERA5 comme forçage robuste des données aux MST dans les études à l’échelle locale sur la forêt boréale canadienne ; et (iii) l’utilisation d’ensembles de données stochastiques horaires pour forcer les données à des MST à base physique pour étudier les conditions hydrométéorologiques dans le climat actuel et les projections futures. / Exchanges of heat and water vapor take place at the land-atmosphere interface. An accurate representation of water and energy fluxes is needed in atmospheric and hydrologic models, given their importance in the regulation of the climate and hydrological cycles. To this end, land surface models (LSMs) have been built to provide relevant information on the land surface conditions, and more specifically, on the exchanges of energy, water, and sometimes, carbon. In this thesis, the main objective is to better understand various processes driving the transfer of energy and water across the soil-vegetation-atmosphere interface, as well as to evaluate the simulation of energy and water exchanges by LSMs driven by meteorological forcings of different sources. Firstly, two different philosophies of land surface modeling were contrasted at snow-free sites across the world. The performance of a statistically based surface energy partitioning approach, the Maximum Entropy Production (MEP) model, was compared to that of a physically based LSM, the Canadian Land Surface Scheme (CLASS). The MEP model offers a simplified approach to estimate surface heat fluxes while imposing energy conservation. Therefore, this model seems suitable for integration into hydrological and remote sensing studies, where the few required input data can be easily retrieved, and when the estimation of the surface heat fluxes is the main objective. The MEP approach was comparable to in situ measurements and to CLASS results. Although MEP uses a simple formulation and fewer input variables, the model was comparable or even better than CLASS simulations. The surface model was, however, weak in simulating nocturnal turbulent fluxes and the soil heat flux overall. Secondly, CLASS was applied at a point scale to evaluate its performance when driven by the ERA5 reanalysis. Simulated surface energy and water fluxes, as well as snowpack and soil properties, were investigated at four different sites spread over the Canadian boreal biome. The results from CLASS driven by ERA5 were compared to available in situ measurements, as well as with results from CLASS driven by observations; additional simulations and analyses were conducted to evaluate the impacts of biases in the ERA5 precipitation. This analysis highlighted the ability of CLASS to represent the land surface variables of the boreal sites when forced by the ERA5 reanalysis, showing high similarity with the observations and with the results from CLASS driven by observations. Although this reanalysis has a relatively coarse v resolution, the data can still be used to drive an LSM and produce consistent results at a point scale. Lastly, we assessed the reliability of CLASS in simulating evapotranspiration (ET) and runoff (ROF) when driven by stochastic data produced by an hourly weather generator over two Canadian boreal sites with contrasting water availability (a dry and a wet site). The results were compared with simulated water fluxes from CLASS forced with reference data (ERA5). This study focused on the interannual and seasonal variation of the water fluxes, as well as on their return levels of extreme daily values. At the dry site, the simulated ET and ROF from CLASS driven by the stochastic and the reference data were similar to each other; both simulations showed that annual ET and ROF are limited by water availability. At the humid site, however, the results from both simulations showed significant discrepancies. CLASS driven by the stochastic data was not able to capture the ET signature, which overall ranges between 550 mm yr−1 and 600 mm yr−1 , and it is not water-limited. The precipitation, temperature, and specific humidity were found to be the critical variables in the simulation of the water fluxes. Moreover, the extreme daily events of stochastic precipitation and ROF from CLASS driven by the stochastic data proved to be reliable at both sites, revealing an excellent opportunity to use this framework to assess water resources under a changing climate scenario. In short, this thesis focused on land surface modeling over multiple vegetated sites, with an emphasis on the energy and water exchanges between the land surface and the atmosphere. The results brought some future work perspective in regards to (i) the use of a simplified approach for estimating the surface heat fluxes; (ii) the use of ERA5 reanalysis as robust forcing data to LSMs in local-scale studies over the Canadian boreal forest; and (iii) the use of hourly stochastic data sets as forcing data to physically based LSMs to investigate hydrometeorological conditions in the present climate and in future projections.
|
2 |
Fouilles Massives d'Archives Spectroscopiques : L'Observatoire Virtuel, de la Vapeur d'Eau Atmosphérique au Carbone dans les Astéroïdes.Sarkissian, Alain 18 March 2011 (has links) (PDF)
C'est à l'intersection des domaines de recherches qu'il y a aujourd'hui le plus de chance de participer à une découverte majeure. Les domaines eux-même sont très bien couverts et c'est vrai qu'il faut parfois tant se spécialiser que les aspects marginaux nous échappent. Voila une motivation qui sort des motivations scientifiques actuelles telles que la compréhension de la destruction de l'ozone polaire, l'évolution de notre climat, ou la recherche d'une vie en dehors de notre planète. C'est pourtant également une motivation qui permet d'être simultanément sur plusieurs sujets brûlants du moment. Ainsi, mon travail passé, actuel et probablement futur sur les atmosphères et les climats de la Terre en particulier et en planétologie en général montrent bien le fil conducteur de mes recherches. La spectroscopie et la mod ́elisation radiative étaient mes outils qui jusqu'à présent marquaient les limites de ces recherches.
|
3 |
Exploitation des mesures "vapeur d'eau" du satellite Megha-Tropiques pour l'élaboration d'un algorithme de restitution de profils associés aux fonctions de densité de probabilité de l'erreur conditionnelleSivira, Ramses 16 December 2013 (has links) (PDF)
La place de la vapeur d'eau est centrale dans le système climatique : à l'échelle globale, elle participe à la redistribution de l'excédent d'énergie des régions tropicales vers les régions polaires via les grandes cellules de circulation, à méso-échelle elle participe au développement (maturation, dissipation) des systèmes nuageux, précipitants ou non, et à plus petite échelle, ce sont les lois de la thermodynamique humide qui régissent la microphysique de ces nuages. Finalement c'est le plus abondant des gaz à effet de serre qui est au centre d'une boucle de rétroaction fortement positive. La mission satellite Megha-Tropiques a été conçue pour améliorer la documentation du cycle de l'eau et de l'énergie des régions tropicales, via notamment trois instruments : deux radiomètres microondes MADRAS (un imageur) et SAPHIR (un sondeur) respectivement dédiés à l'observation des précipitations (liquides et glacées) et de l'humidité relative atmosphérique, et un radiomètre multi-spectral ScaRaB pour la mesure des flux radiatifs au sommet de l'atmosphère dans le bilan de l'eau et l'énergie de l'atmosphère tropicale et décrire l'évolution de ces systèmes. Les caractéristiques des instruments embarqués permettraient une résolution étendue autours de la raie à 183 GHz du spectre microonde, qui permet de sonder le contenu en vapeur d'eau même en présence des nuages convectifs. Afin de construire une base d'apprentissage où les valeurs d'entrée et sortie soient parfaitement colocalisées et qui, en même temps, soit représentative du problème à modéliser, une large base de radiosondages obtenus par ciel claire et couvrant la bande tropicale (±30° en latitude) sur la période 1990-2008 a été exploitée en parallèle à un modèle de transfert radiatif pour l'obtention des températures de brillance simulées des deux radiomètres. Nous avons mis au point une méthodologie qui nous a permis de développer un algorithme de restitution des profils de vapeur d'eau à partir des observations SAPHIR et MADRAS, et surtout de quantifier l'incertitude conditionnelle d'estimation. L'approche s'est orientée vers l'exploitation des méthodes purement statistiques de restitution des profils afin d'extraire le maximum d'information issues des observations, sans utiliser d'information complémentaire sur la structure thermodynamique de l'atmosphère ou des profils a priori, pour se concentrer sur les diverses restrictions du problème inverse. Trois modèles statistiques ont été optimisés sur ces données d'apprentissage pour l'estimation des profils sur 7 couches de la troposphère, un réseaux de neurones (modèle perceptron multicouches), le modèle additif généralisé et le modèle de machines à vecteur de support (Least Square-Support Vector Machines), et deux hypothèses de modélisation de la fonction de distribution de la probabilité (pdf) de l'erreur conditionnelle sur chacune des couches ont été testées, l'hypothèse Gaussienne (HG) et le mélange de deux distributions Gaussiennes (M2G). L'effort porté sur l'optimisation des modèles statistiques a permis de démontrer que les comportements des trois modèles d'estimation sont semblables, ce qui nous permet de dire que la restitution est indépendante de l'approche utilisée et qu'elle est directement reliée aux contraintes physiques du problème posé. Ainsi, le maximum de précision pour la restitution des profils verticaux d'humidité relative est obtenu aux couches situées dans la moyenne troposphère (biais maximum de 2,2% et coefficient de corrélation minimum de 0,87 pour l'erreur d'estimation) tandis que la précision se dégrade aux extrêmes de la troposphère (à la surface et proche de la tropopause, avec toutefois un biais maximale de 6,92% associé à une forte dispersion pour un coefficient de corrélation maximum de 0,58 pour l'erreur d'estimation), ce qui est expliqué par le contenu en information des mesures simulées utilisées. A partir de la densité de probabilité de l'erreur, connaissant les températures de brillance observées, des intervalles de confiance conditionnels de l'humidité de chacune de couches de l'atmosphère ont été estimés. Les algorithmes d'inversion développés ont été appliqués sur des données réelles issues de la campagne "vapeur d'eau" de validation Megha-Tropiques de l'été 2012 à Ouagadougou qui a permis d'obtenir des mesures par radiosondages coïncidentes avec les passages du satellite. Après prise en compte de l'angle de visée, des incertitudes liées à l'étalonnage de SAPHIR et des erreurs associées à la mesure in situ, l'exploitation de ces données a révélé un comportement semblable aux données de l'apprentissage, avec une bonne performance (biais de 4,55% et coefficient de corrélation de 0,874 sur l'erreur d'estimation) en moyenne troposphère et une dégradation aux extrêmes de la colonne atmosphérique (biais de -4,81% et coefficient de corrélation de 0,419). L'application systématique sur l'ensemble des mesures réalisées par SAPHIR permettra donc mener des études de la variabilité de la vapeur d'eau tropicale en tenant compte des intervalles de confiance associés à la restitution.
|
4 |
Estimations du profil du rapport isotopique de la vapeur d'eau dans la troposphère à partir de spectres mesurés dans l'infrarouge thermique par le sondeur IASI: méthodologie d'inversion et analyses des premières distributions spatialesLacour, Jean Lionel 29 January 2015 (has links)
La vapeur d’eau est le principal gaz à effet de serre de l’atmosphère et implique un processus de rétroaction climatique positif qui se traduit par une augmentation importante de l’humidité dans la troposphère dans les prochaines décennies. La vapeur d’eau joue également un rôle primordial dans le système climatique, notamment via le transport d’énergie de l’équateur vers les pôles. Malgré ceci, la compréhension des mécanismes qui contrôlent la distribution de la vapeur d’eau sur le globe reste insuffisante, ce qui se répercute sur les prédictions de l’évolution de notre climat. Depuis quelques années, les observations de la composition isotopique de la vapeur d’eau se sont révélées être particulièrement utiles pour aider à mieux comprendre les processus hydrologiques car les différents isotopologues de la vapeur d’eau (H216O, H218O, HDO) se comportent différemment selon les processus en jeu.<p>Dans cette perspective, les mesures de radiances du système terre-atmosphère dans l’infrarouge thermique par l’Interféromètre Atmosphérique de Sondage Infrarouge (IASI) à bord de la plateforme météorologique MetOp, peuvent fournir des observations du rapport isotopique δD (rapport HDO/H216O), à l’échelle globale et à haute résolution spatio-temporelle, pour autant que la restitution du rapport puisse être obtenue avec une précision suffisante.<p>Dans ce travail, nous présentons une méthodologie robuste et précise pour la restitution du profil de δD à partir des spectres IASI. Basée sur la méthode d’estimation optimale, elle consiste à appliquer des contraintes d’inversion adaptées afin d’obtenir des profils de δD fiables. Nous décrivons le choix de celles-ci et nous montrons que la méthode mise en place permet de fournir des profils de δD qui présentent un maximum de sensibilité dans la troposphère libre. L’adéquation de la méthode mise en place est ensuite évaluée grâce à une étude d’inter-comparaison avec des mesures dérivées de l’instrument spatial TES (Tropospheric Emission Spectrometer sur AURA) et FTIR localisés au sol. L’exactitude des profils IASI a aussi pu être déterminée grâce à des comparaisons avec des mesures in situ. <p>Dans une autre partie du travail, nous nous attachons à préciser les applications liées à l’utilisation des nouvelles mesures dans le domaine des géosciences. Nous documentons ainsi les capacités du sondeur IASI à fournir des mesures de δD à une résolution spatio-temporelle inégalée et décrivons les diverses distributions obtenues. Nous montrons et analysons notamment les premières cartes globales à haute résolution de δD dans la troposphère. Les mesures de δD et de l’humidité sont analysées conjointement à l’aide de modèles simples et permettent de démontrer la plus-value mesures de δD depuis les satellites. Parmi les résultats les plus significatifs, citons la mise en évidence de la signature isotopique des différentes sources de la vapeur d’eau (évaporation continentale/océanique), et celle de l’empreinte des différents processus hydrologiques qui contrôlent l’humidification de l’atmosphère (convection, mélange de masse d’air, ré-évaporation des gouttes de pluie). <p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
5 |
Analyse de la vapeur d’eau atmosphérique et des processus dynamiques associés / Analysis of atmospheric water vapor and related dynamic processesHadad, Dani 14 December 2018 (has links)
Dans le contexte du réchauffement et du changement climatique, il est important d’étudier les distributions, les cycles saisonniers et les tendances des gaz à l’état de trace dans l’atmosphère tels que la vapeur d’eau. L'Observatoire de Physique du Globe de Clermont-Ferrand a en charge plusieurs dispositifs d’observation dont le site instrumenté Cézeaux, Opme et Puy de Dôme (CO-PDD) situés dans le centre de la France (45◦ N, 3◦ E). Le site des Cézeaux dispose d’un LIDAR Rayleigh – Mie - Raman fournissant en routine des profils verticaux de vapeur d’eau et de paramètres optiques caractérisant les cirrus. Le site du puy de Dôme est équipé d’un spectroscope à cavité optique (CRDS-Picarro). Des mesures de colonnes totales de vapeur d’eau sont disponibles sur tous ces sites par GPS. Le site d’Opme est équipé d’un pluviomètre. Enfin Météo-France effectue le travail de contrôle qualité des données météorologiques sur les stations de mesure en France et ces données ont été utilisées dans cette thèse. La validation des données sur le site du puy de Dôme a été la première la première exploitation dans cette thèse. Des comparaisons des données sur le puy de Dôme ont montré un très bon accord entre les données de vapeur d’eau extraites de la station météorologique du puy de Dôme, de Météo France et les donnes CRDS du puy de Dôme, avec une corrélation de 0.94 et 0.98 respectivement. Les profils verticaux obtenus par LIDAR ont permis de sélectionner une anomalie de vapeur d’eau et d’identifier une intrusion stratosphère-troposphère en analysant les processus dynamique associés à cette anomalie. Les données OLR ont montré que cette intrusion est accompagnée de convection profonde et enfin LACYTRAJ confirme l'origine stratosphérique d’une partie de la masse d'air présente au-dessus de Clermont-Ferrand au cours de l’anomalie. Les longues séries d’observations (ex : Puy de Dôme 1995-2015) et des ré-analyse ECMWF ERA-Interim (1979-2017) et la diversité des sources de données (ex : satellites AIRS et COSMIC), nous permettent de documenter, analyser et comparer la variabilité, les cycles et la tendance de la vapeur d'eau à la surface et dans la troposphère, à différentes échelles de temps et déterminer les processus géophysiques responsables des distributions de vapeur d'eau sur le site CO-PDD. Le cycle annuel de la vapeur d'eau est clairement établi pour les deux sites de différentes altitudes et pour tous les types de mesure. Les sites de Cézeaux et du puy de Dôme ne présentent presque aucun cycle diurne, suggérant que la variabilité de la vapeur d'eau à la surface sur ces deux sites est plus influencée par les systèmes météorologique sporadiques que par les variations diurnes régulières. Les données LIDAR montrent une plus grande variabilité mensuelle de la distribution verticale que les produits satellites COSMIC et AIRS. La colonne totale de vapeur d'eau GPS sur le site des Cézeaux présente une tendance positive (0,42 ± 0,45 g/kg*décade entre 2006-2017). L'analyse par régressions multi-linéaires montre que les forçages continentaux (East Atlantic, East Atlantic-West Russia) ont une plus grande influence que le forçage océanique (Nord Atlantic Oscillation) sur les variations de vapeur d'eau. / In the context of global warming and climate change, it is important to study the distributions, seasonal cycles and trends of trace gases in the atmosphere such as water vapor. of the Observatoire de Physique du Globe de Clermont-Ferrand is in charge of several observation devices including the instrumented site Cézeaux, Opme and Puy de Dôme (CO-PDD) located near the center of France (45◦ N, 3◦ E). The site of Cézeaux is instrumented by a Rayleigh - Mie–LIDAR Raman providing routine vertical profiles of water vapor mixing ratio and optical parameters characterizing cirrus clouds. The puy de Dôme site is equipped with an optical cavity spectroscope (CRDS-Picarro). Measurements of total water vapor columns are available on all these sites by GPS. The Opme site is equipped with rain gauges. Finally, Météo-France performs the quality control work and of data on meteorological stations in France and these data were used in this thesis. The validation of the puy de Dôme data was the first the first task in this thesis. Comparisons between the puy de Dôme data sets showed a very good agreement between the water vapor datafrom the OPGC meteorological station of Puy de Dôme, Météo France and CRDS data with a correlation of 0.94 and 0.98 respectively. The vertical profiles deduced from the LIDAR allowed to identify a water vapor anomaly and a stratosphere-troposphere intrusion associated with this anomaly. OLR data showed that this intrusion could be linked with deep convection and LACYTRAJ confirms the stratospheric origin of a part of the air mass present above Clermont-Ferrand. Long series of observations (eg Puy de Dôme 1995-2015) and ECMWF ERA-Interim re-analysis (1979-2017) and the diversity of data sources (eg AIRS and COSMIC satellites), allowed us to document, analyze and compare the variability, cycles and trend of surface and tropospheric water vapor at different time scales and determine the geophysical processes responsible for water vapor distributions at the site of CO-PDD. The annual cycle of water vapor is clearly established for the two sites of different altitudes and for all types of measurement. Cézeaux and puy de Dôme present almost no diurnal cycle, suggesting that the variability of surface water vapor at this site is more influenced by a sporadic meteorological system than by regular diurnal variations. The LIDAR dataset shows a greater monthly variability of the vertical distribution than the COSMIC and AIRS satellite products. The Cézeaux site presents a positive trend for the GPS water vapor total column (0.42 ± 0.45 g/kg*decade during 2006–2017) and a significant negative trend for the surface water vapor mixing ratio (−0.16 ± 0.09 mm/decade during 2002–2017). The multi-linear regression analysis shows that continental forcings (East Atlantic Pattern and East Atlantic-West Russia Pattern) have a larger influence than oceanic forcing (North Atlantic Oscillation) on the water vapor variations.
|
Page generated in 0.0903 seconds