• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On-Chip Atomic Spectroscopy

Conkey, Donald B. 16 March 2007 (has links) (PDF)
This thesis presents the integration of atomic vapor cells with anti-resonant reflecting optical waveguides (ARROWs) fabricated on silicon chips. These potentially provide a compact platform for a number of optical applications, including the study of quantum coherence effects such as electromagnetically induced transparency and single-photon nonlinearities, as well as frequency stabilization standards. The use of hollow waveguides allows for light propagation in low index (vapor) media with compact mode areas. ARROWs make particularly attractive waveguides for this purpose because they can be interfaced with solid core waveguides, microfabricated on a planar substrate, and are effectively single mode. ARROW fabrication utilizes an acid-removed sacrificial core surrounded by alternating plasma deposited dielectric layers, which act as Fabry-Perot reflectors. To demonstrate the effectiveness of the ARROW as a vapor cell, a platform consisting of solid and hollow core waveguides integrated with rubidium vapor cells was developed. A variety of sealing techniques were tested for vapor cell integration with the ARROW chip and for compatibility with rubidium. Rubidium was used because it is of particular interest for studying quantum coherence effects. Liquefied rubidium was transferred from a bulk supply into an on-chip vapor cell in an anaerobic atmosphere glovebox. Optical absorption measurements confirmed the presence of rubidium vapor within the hollow waveguide platform. Further analysis of the measurements revealed high optical density of rubidium atoms in the hollow core. Saturated absorption spectroscopy measurements verified that the on-chip integrated vapor cell was suitable for common precision spectroscopy applications.
2

EIT, Slow light, and Sealing Methods for Embedding Rubidium into the ARROW System

Hurd, Katherine Barnett 16 December 2010 (has links) (PDF)
Light-matter interactions are fundamentally based on the quantum mechanical principles that govern photons, electrons and other fundamental particles. One very interesting phenomenon within all of light-matter interactions is Electromagnetically Induced Transparency(EIT). This phenomenon causes an otherwise absorbing atomic transition to stop absorbing through quantum mechanical interference of probability wave functions. Corresponding to that change in absorption, will be a sudden, large change in the index of refraction. This change in the index of refraction leads to another phenomenon in which the group velocity of light can be slowed down dramatically. In the past, many researchers have been able to achieve both EIT and slow light in bulk atomic vapor cells. In an attempt to miniaturize this process and we have been using a platform of Anti Resonant Reflecting Optical Waveguides (ARROW) devices to both guide light and contain the interacting matter. However, the platform creates a whole new set of challenges when integrating rubidium vapor into the hollow waveguides as rubidium is highly reactive and it is difficult to maintain an inert atmosphere for the rubidium vapor. A variety of sealing methods were attempted and their appropriateness and effectiveness was analyzed. Among these sealing methods were PMMA, Crystal Wax, Active Solder, Epoxy, and Indium Solder. PMMA, Crystal Wax and Active Solder each had major faults in one or more of the sealing requirements. We have used a high temperature epoxy with relative success to contain the rubidium vapor. However, the epoxy degrades very quickly at the high temperatures required for EIT testing. Indium solder is the most recent application method. It has high potential although we have yet to fully test its effectiveness. We were able to successfully demonstrate the first EIT and slow light on a chip with our ARROW atomic vapor cell system. In the slow light experiment, we were able to slow light down to 2.5x105m/s. The group velocity of light decreased from the standard 3x108m/s by a factor of 1200. We believe we can achieve even lower group velocities using this same platform through further experimentation.
3

A Preliminary Study of Pump/Probe Angular Dependence of Zeeman Electromagnetically Induced Transparency

Jackson, Richard Aram, Jr. 12 August 2015 (has links)
No description available.
4

Design, microfabrication and characterization of alkali vapor cells for miniature atomic frequency references / Etude, optimisation fonctionnelle et réalisation de cellules à vapeur alcaline originales pour les références de fréquence atomique miniatures de nouvelle génération

Maurice, Vincent 07 July 2016 (has links)
Les horloges atomiques miniatures présentent des stabilités de fréquence inégalées avec des volumes de quelquescentimètres cubes et des consommations inférieures à 100mW.Dans cette thèse, les paramètres optimaux concernant la conception et la fabrication des cellules à vapeur decésium, un des composant clés de ce type d’horloges, sont définis. Ainsi, les performances de plusieurs cellulesont été caractérisées en condition d’horloge à court et long terme. En parallèle, des solutions sont proposéespour pallier à certaines limitations telles que la plage de température opérationnelle, le coût de fabrication dudispositif et la facilité d’assemblage du module physique.Un nouveau mélange de gaz tampon composé de néon et d’hélium peut étendre la plage de fonctionnementau-dessus de 80 C, en adéquation avec les besoins industriels. A l’inverse des gaz tampon usuels, ce mélangeest compatible avec les dispensers de césium solides, dont la fiabilité est établie.Outre les gaz tampon, les revêtements permettent également de limiter la relaxation induite par les parois dela cellule. Ici, des revêtements d’octadécyltrichlorosilane sont étudiés. Un effet anti-relaxant a été observé dansdes cellules centimétriques et un procédé a été développé pour revêtir des cellules micro-fabriquées.D’autres sources de césium sont présentées pour s’affranchir des inconvénients propres aux dispensers solides.Un dispenser sous forme de pâte, qui peut être déposée collectivement, a été étudié et montre des densitésatomiques stables jusqu’à présent. Un concept de vannes hermétiques micro-fabriquées a été proposé poursceller hermétiquement et séparer des cellules d’un réservoir de césium commun.Les premières étapes vers un module physique micro-fabriqué sont ensuite présentées. En particulier, un designoriginal de cellule combinant des réseaux de diffraction à une cavité en silicium formée par gravure anisotropea été caractérisé et a montré des contrastes CPT remarquables malgré un volume de cavité réduit, ce qui permettraitde réaliser un module physique particulièrement compact. Enfin, des cellules intégrant des résistanceschauffantes et thermométriques ont été fabriquées et leur compatibilité vis-à-vis du champ magnétique généréa été caractérisée dans un prototype de module physique compact. / Chip-scale atomic clocks (CSACs) provide unprecedented frequency stability within volumes down to a fewcubic centimeters and power consumptions as low as 100mW.In this work, we determine the optimal parameters regarding the design and the fabrication of cesium vaporcells, one of the key components of a CSAC. For this purpose, cells were characterized on both short and longtermperformances in clock setups. In addition, we propose solutions to overcome present limitations includingthe operating temperature range, the device microfabrication cost and the ease of integration of the physicspackage.A novel mixture of buffer-gas composed of neon and helium was found to potentially extend the operating rangeof the device above 80 C, meeting the industrial requirements. Unlike the well-known buffer gas compositions,this mixture is compatible with solid cesium dispensers whose reliability is established. As an alternativeto buffer gases, wall coatings are known to limit the relaxation induced by sidewalls. Here, we investigatedoctadecyltrichlorosilane (OTS) coatings. An anti-relaxation effect has been observed in centimeter-scale cellsand a process was developed to coat microfabricated cells.Other cesium sources have been investigated to overcome the drawbacks imposed by solid cesium dispensers. Apaste-like dispenser, which can be deposited collectively, was explored and has shown stable atomic densities sofar. Single-use zero-leak micro valves were also proposed to hermetically seal and detach cells from a commoncesium reservoir.Eventually, the first steps toward a microfabricated physics package were made. In particular, an originalcell design combining diffraction gratings with an anisotropically etched single-crystalline silicon sidewalls wascharacterized and exhibited remarkable CPT contrasts despite a reduced cavity volume, which could lead to amore compact physics package. Finally, cells with integrated heating and temperature sensing resistors werefabricated and their magnetic field compliance was characterized in a compact physics package prototype.

Page generated in 0.0338 seconds