Spelling suggestions: "subject:"variété dde bierbrauer"" "subject:"variété dee bierbrauer""
1 |
Vers une classification des décompositions motiviques d'espaces homogènesDe Clercq, Charles 02 November 2011 (has links) (PDF)
Cette thèse porte sur les motifs de Chow des variétés projectives homogènes, et leurs liens avec des invariants classiques et certaines questions de géométrie rationnelle. Le motif (à coefficients finis) d'un espace homogène sous l'action d'un groupe algébrique semisimple et affine G se décompose de manière essentiellement unique en une somme directe de motifs indécomposables. Ce travail prend part au programme de classification de ces motifs, notre principal outil étant la théorie des motifs supérieurs. Nous montrons que cette classification est réduite à celle à coefficients dans F_p si G est de type intérieur, et trouvons un analogue si G est de type extérieur. Nous classifions ensuite complètement les motifs indécomposables des espaces homogènes sous l'action d'un groupe projectif linéaire et en déduisons la dichotomie motivique de PGL_1. Nous proposons ensuite un outil de décomposition motivique utilisé par Garibaldi, Semenov et Petrov pour déterminer toutes les décompositions d'espaces homogènes si G est de type E_6. Enfin nous montrons que la décomposition des variétés de Severi-Brauer généralisées SB(p, A) à coefficients dans F_p ne dépend que de la valuation p-adique de l'indice de A.
|
2 |
Calculs explicites dans les groupes de Grotendieck et de Chow des variétés homogènes projectivesDoray, Franck 09 October 2006 (has links) (PDF)
Les variétés homogènes projectives sous un groupe algébrique déployé<br />ont une géométrie assez simple. La décomposition de Bruhat fournit, en<br />effet, une décomposition cellulaire de ces variétés. Il en résulte que<br />l'anneau de Chow de telles variétés admet une base formée des classes<br />des adhérences de ces cellules, appelées variétés de Schubert. <br />Il en est de même pour l'anneau de Grothendieck de telles variétés. <br />Cela entraîne en particulier que ces deux anneaux sont sans torsion. <br />Plus précisément, la base ainsi obtenue pour l'anneau de Grothendieck <br />fournit la filtration topologique de cette anneau et redonne <br />la base de l'anneau de Chow par passage au gradué. D'autre part, <br />il existe une seconde base due à Pittie et Steinberg de l'anneau <br />de Grothendieck de ces variétés, invariante sous l'action du groupe de Galois.<br /><br />Le Chapitre II de la thèse revient, dans le cas des drapeaux complets<br />associés à un espace vectoriel, sur les résultats connus concernant<br />la combinatoire donnant les expressions des faisceaux structuraux des<br />variétés de Schubert dans l'anneau de Grothendieck, ce qui permet, en<br />suivant les travaux de Lascoux notamment, d'exprimer combinatoirement<br />la matrice de changement de bases entre les deux bases ci-dessus. Dans<br />le cas de la variété de drapeaux complets d'un espace vectoriel de<br />dimension trois, nous donnons des résolutions explicites des faisceaux<br />structuraux des variétés de Schubert en termes des fibrés de la base<br />de Pittie.<br /><br />Les groupes de Chow sont connus en codimension un et ont été étudiés<br />en codimension deux par Karpenko dans le cas des variétés de<br />Severi-Brauer. Le calcul des motifs des varietés homogènes projectives<br />sous le groupe projectif linéaire d'une algébre simple centrale sur un<br />corps se ramène sous certaines conditions au calcul de motifs de<br />variétés de Severi-Brauer généralisées, formes de grassmaniennes,<br />comme l'ont montré Calmès, Petros, Semenov et Zainouline. Dans le<br />chapitre II, nous construisons des isomorphismes de variétés<br />explicites qui permettent de ramener le calcul des groupes de Chow de<br />ces variétés au calcul de groupes de Chow de variétés de Severi-Brauer<br />généralisées.<br /><br />Les techniques décrites dans le chapitre III sont réutilisées au<br />chapitre IV pour redémontrer un résultat de Karpenko sur la<br />décomposition du motif de Chow de variétés de Severi-Brauer associée<br />à une algèbre de matrices à coefficients dans une algèbre simple<br />centrale.
|
Page generated in 0.0785 seconds