Spelling suggestions: "subject:"variété torique"" "subject:"variété historiques""
1 |
Variétés toriques : phylogénie et catégorie dérivées / Toric varieties : phylogenetics and derived categoriesMichalek, Mateusz 29 March 2012 (has links)
L'objectif de cette thèse est d'étudier les propriétés de variétés toriques particulières. La thèse est divisée en trois parties, les deux premières étant fortement liées. Dans la première partie, nous étudions des variétés algébriques associées aux processus de Markov sur les arbres. A chaque processus de Markov sur un arbre on peut associer une variété algébrique. Motivé par la biologie, nous nous concentrons sur les processus de Markov dé finis par une action de groupe. Nous étudions les conditions pour que la variété obtenue soit torique. Nous donnons un résultat où les variétés obtenues sont normales, ainsi que des exemples où elles ne le sont pas. L'une des principales méthodes que nous utilisons est la généralisation des notions de prises et de réseaux introduites dans [BW07] à des groupes abéliens arbitraires. Dans notre contexte, les réseaux forment un groupe qui agit sur la variété. Par ailleurs, l'espace ambiant de lavariété est la représentation régulière de ce groupe. Le principal problème ouvert que nous essayons de résoudre dans cette partie est une conjecture de Sturmfels et Sullivant [SS05, Conjecture 2] indiquant que le schéma a fine associé au modèle 3-Kimura estdé fini par un idéal engendré en degré 4. Notre meilleur résultat dit que le schéma projectif associé peut être dé fini par un idéal engendré en degré 4. Avec Maria Donten -Bury, nous proposons une méthode pour engendrer l'idéal associé à la variété pour tous les modèles. Nous montrons que notre méthode fonctionne pour de nombreux modèles ainsi que pour les arbres si et seulement si la conjecture de Sturmfels et Sullivant est vraie. Nous présentons quelques applications, par exemple au problème d'identi abilité en biologie. La deuxième partie concerne les variétés algébriques associées aux graphes trivalents pour le modèle de Jukes-Cantor binaire. Il s'agit d'un travail en commun avec Weronika Buczyńska, Jarosław Buczyński et Kaie Kubjas. La variété associée á un graphe peut être représentéevpar un semi-groupe gradué. Nous étudions les liens entre les propriétés du graphe et le semigroupe. Le théorème principal borne le degré en lequel le semi-groupe est engendré par le premier nombre de Betti du graphe, plus un. Dans la dernière partie, nous étudions la structure de la catégorie dérivée des faisceaux cohérents des variétés toriques lisses. Dans un travail commun avec Michał Lasoń [LM11], nous construisons une collection fortement exceptionnelle complète de fi brés en droites pour une grande classe de variétés toriques complètes lisses dont le nombre de Picard est égal á trois. De nombreuses questions concernant le type de collections auxquelles on peut s'attendre sur les variétés toriques de certains types sont encore ouvertes. A ce titre, nous prouvons que Pn éclaté en deux points ne possède pas de collection fortement exceptionnelle complète de fibrés en droites pour n assez grand. Ceci fournit une collection infi nie de contre-exemples à la conjecture de King. Le premier contre-exemple est dû à Hille et Perling [HP06]. Récemment, des contre-exemples ont également été trouvés par E mov [E ] dans le cadre des variétés de Fano. Nous allons travailler sur le corps des nombres complexes C. Toutes les variétés considérées sont des variétés algébriques dans le sens de [Har77]. / The aim of this thesis is to investigate the properties of special toric varieties. The thesis is divided into three parts. The first two of them are strongly related to each other.In the fi rst, main part we study algebraic varieties associated to Markov processes on trees. To each Markov process on a tree one can associate an algebraic variety. Motivated by biology, we focus on Markov processes de fined by a group action. We investigate underwhich conditions the obtained variety is toric. We provide conditions ensuring that the obtained varieties are normal, as well as give examples when they are not. One of the main tools we use is the generalization of the notions of sockets and networks introduced in [BW07] to arbitrary abelian groups. In our setting the networks form a group, that acts on the variety. Moreover the ambient space of the variety is the regular representation of this group. The main open problem that we address in this part is a conjecture of Sturmfels and Sullivant [SS05, Conjecture 2] stating that the afi ne scheme associated to the 3-Kimura model is de fined by an ideal generated in degree 4. Our strongest result states that the associated projective scheme can be generated in degree 4. Together with Maria Donten -Bury we also propose a method for generating the ideal defi ning the variety for any model. We prove that our method works for many models and trees if and only if the conjecture of Sturmfels and Sullivant holds. We present some applications, for example to theidenti ability problem in biology. The second part concerns algebraic varieties associated to trivalent graphs for the binary Jukes-Cantor model. It is a joint work with Weronika Buczyńska, Jarosław Buczyński and Kaie Kubjas. In case of the graph, the associated variety can be represented by a graded semigroup. We investigate the connections between properties of the graph and the semigroup. The main theorem bounds the degree in which the semigroup is generated by the first Betti number of the graph plus one. Due to connections with the first part much of the terminology that we use is either a specialization or generalization of previous de finitions. From the one hand, as we are working with graphs with possible loops the notions of leaves, nodes and valency are more subtile than for trees. From the other hand, as we are dealing only with the binary Jukes-Cantor model, sockets and networks have got a very special form. In the last part we study the structure of the derived category of coherent sheaves for smooth toric varieties. As a result of a joint work with Michał Lasoń [LM11] we construct a full, strongly exceptional collection of line bundles for a large class of smooth, complete toric varieties with Picard number three. Many questions concerning what kind of collections should be expected on toric varieties of certain types are still open. As a contribution we prove that Pn blown up in two points does not have a full, strongly exceptional collection of line bundles for n large enough. This provides an in finite collection of counterexamples to King's conjecture. The first such counterexample is due to Hille andPerling [HP06]. Recently also counterexamples in the Fano case were found by E mov [E ].
|
2 |
Términalité, Désingularisations et Applications Birationnelles ToriquesColau Merlo, Leandro 10 August 2009 (has links) (PDF)
Dans cette thèse on obtient des conditions suffisantes pour la terminalité des variétés toriques de dimension arbitraire, généralisant des résultats connus en dimension 3 et 4. On classifie les variétés toriques Q-factorielles, terminales, Gorenstein de dimension 4 qui admettent un G-désingularisation. Une variété torique X obtenue par l'éclatement a poids d'un point régulier invariant d'une variété de Fano torique avec nombre de Picard égal à 1 est décrit par deux vecteurs en Z^n. En termes de ces vecteurs on décrit le cône nef et on classifie les contractions élémentaires de X au sens de Mori. Dans le cas où la variété de Fano est un espace projectif, on donne quelques familles d'exemples où les variétés éclatées sont terminales.
|
3 |
Problème de maximalité pour les variétés toriquesSine, Alexandre 13 December 2007 (has links) (PDF)
Une variété algébrique complexe définie sur les réels est dite maximale si <br />la somme de ses nombres de Betti pour l'homologie de Borel Moore à coefficients modulo 2 est égale à la somme des nombres Betti de sa partie réelle. On montrera ici que d'une part, les variétés toriques de dimension 4 sont maximales et d'autre part que les variétés toriques affines simpliciales de dimension 5 sont maximales.
|
4 |
Variétés toriques : phylogénie et catégorie dérivéesMichalek, Mateusz 29 March 2012 (has links) (PDF)
L'objectif de cette thèse est d'étudier les propriétés de variétés toriques particulières. La thèse est divisée en trois parties, les deux premières étant fortement liées. Dans la première partie, nous étudions des variétés algébriques associées aux processus de Markov sur les arbres. A chaque processus de Markov sur un arbre on peut associer une variété algébrique. Motivé par la biologie, nous nous concentrons sur les processus de Markov dé finis par une action de groupe. Nous étudions les conditions pour que la variété obtenue soit torique. Nous donnons un résultat où les variétés obtenues sont normales, ainsi que des exemples où elles ne le sont pas. L'une des principales méthodes que nous utilisons est la généralisation des notions de prises et de réseaux introduites dans [BW07] à des groupes abéliens arbitraires. Dans notre contexte, les réseaux forment un groupe qui agit sur la variété. Par ailleurs, l'espace ambiant de lavariété est la représentation régulière de ce groupe. Le principal problème ouvert que nous essayons de résoudre dans cette partie est une conjecture de Sturmfels et Sullivant [SS05, Conjecture 2] indiquant que le schéma a fine associé au modèle 3-Kimura estdé fini par un idéal engendré en degré 4. Notre meilleur résultat dit que le schéma projectif associé peut être dé fini par un idéal engendré en degré 4. Avec Maria Donten -Bury, nous proposons une méthode pour engendrer l'idéal associé à la variété pour tous les modèles. Nous montrons que notre méthode fonctionne pour de nombreux modèles ainsi que pour les arbres si et seulement si la conjecture de Sturmfels et Sullivant est vraie. Nous présentons quelques applications, par exemple au problème d'identi abilité en biologie. La deuxième partie concerne les variétés algébriques associées aux graphes trivalents pour le modèle de Jukes-Cantor binaire. Il s'agit d'un travail en commun avec Weronika Buczyńska, Jarosław Buczyński et Kaie Kubjas. La variété associée á un graphe peut être représentéevpar un semi-groupe gradué. Nous étudions les liens entre les propriétés du graphe et le semigroupe. Le théorème principal borne le degré en lequel le semi-groupe est engendré par le premier nombre de Betti du graphe, plus un. Dans la dernière partie, nous étudions la structure de la catégorie dérivée des faisceaux cohérents des variétés toriques lisses. Dans un travail commun avec Michał Lasoń [LM11], nous construisons une collection fortement exceptionnelle complète de fi brés en droites pour une grande classe de variétés toriques complètes lisses dont le nombre de Picard est égal á trois. De nombreuses questions concernant le type de collections auxquelles on peut s'attendre sur les variétés toriques de certains types sont encore ouvertes. A ce titre, nous prouvons que Pn éclaté en deux points ne possède pas de collection fortement exceptionnelle complète de fibrés en droites pour n assez grand. Ceci fournit une collection infi nie de contre-exemples à la conjecture de King. Le premier contre-exemple est dû à Hille et Perling [HP06]. Récemment, des contre-exemples ont également été trouvés par E mov [E ] dans le cadre des variétés de Fano. Nous allons travailler sur le corps des nombres complexes C. Toutes les variétés considérées sont des variétés algébriques dans le sens de [Har77].
|
5 |
Points de hauteur bornée sur les hypersurfaces des variétés toriques / Points of bounded height on hypersurfaces of toric varietiesMignot, Teddy 23 November 2015 (has links)
Depuis les 50 dernières années, de nombreux progrès ont été faits dans la compréhension du comportement asymptotique du nombre de points rationnels de hauteur bornée sur les variétés algébriques. Des conjectures précises ont été avancées par Baryrev, Manin et Peyre quant à la formule asymptotique attendue pour une variété générale.En 1962, à l'aide d'arguments issus de la méthode du cercle de Hardy et Littlewood, B. Birch a donné une estimation précise du nombre de points à coordonnées entières bornées dans une hypersurface définie par une équation homogène. Ceci revient à démontrer la conjecture de Batyrev-Manin-Peyre pour les hypersurfaces de l'espace projectif. Plus récemment, V. Blomer et J. Brüdern ont élaboré des techniques leur permettant d'établir une formule pour le comportement asymptotique du nombre de points de hauteur bornée pour des hypersurfaces d'espaces multiprojectifs définies par des équations multihomogènes diagonales. Parallèlement, D. Schindler a démontré la conjecture pour des hypersurfaces générales d'espaces biprojectifs, à l'aide de développements de la méthode de Birch.L'objet de cette thèse a été d'utiliser et de généraliser les techniques de Schindler, Blomer et Brüdern afin de démontrer la validité de la conjecture de Batyrev-Manin-Peyre pour le cas d'hypersurfaces de variétés toriques plus générales.Ce travail est composé de trois parties. La première partie concerne le cas particulier des hypersurfaces de tridegré (1,1,1) d'un espace triprojectif. Ce cas particulier constitue une première extension des techniques de Schindler à des variétés toriques dont le rang du groupe de Picard est 3. La deuxième partie est consacrée à l'étude des hypersurfaces d'une famille de variétés toriques dont le rang du groupe de Picard est 2 et contenant la famille des espaces biprojectifs. Il s'agit en effet d'étendre la méthode de Schindler afin d'obtenir une formule asymptotique pour le nombre de points de hauteur bornée sur ces variétés. Enfin, dans la dernière partie, nous généralisons les méthodes développées dans les deux parties précédentes à des hypersurfaces des variétés toriques complètes lisses de rang de groupe dont le cône effectif est supposé simplicial, ce qui nous permet de démontrer la conjecture de Batyrev-Manin-Peyre pour ces variétés. / For the last 50 years, many progresses have been made in the understanding of the asymptotic behaviour of the number of rational points of bouded height on algebraic varieties. Some precise conjectures have been advanced by Batyrev, Manin, and Peyre for the expected asymptotic formula for a general variety.In 1962, using some arguments of the Hardy-Littlewood circle method, B. Birch gave a precise estimate for the number of integral points whose coordinates are bounded on an hypersurface defined by an homogeneous equation. This amounts to demonstrating the Batyrev-Manin-Peyre conjecture for hypersurfaces of projective spaces. More recently, V. Blomer and J. Brüdern developed some methods permitting to establish a formula for the asymptotic growth of the number of points of bounded height on hypersurfaces of multiprojective spaces defined by multihomogeneous diagonal equations. In the same time, D. Schindler proved the conjecture for general hypersurfaces of biprojective spaces by using some developements of the method of Birch.The aim of this thesis was to use and generalize the methods of Schindler, blomer, and Brüdern in order to prove the Batyrev-Manin-Peyre conjecture in the case of hypersurfaces of some general toric varieties.This work contain three parts. The first one deals with the particular case of hypersurfaces of tridegree (1,1,1) of triprojective spaces. This particular case is a first extension of the method of Schindler to some toric varieties whose rank of the Picard group is 3. The second part deals with the study of hypersurfaces of a class of toric varieties whose rank of the Picard group is 2 and containing biprojective spaces. We establish a generalization of the method of Schindler method in order to find an asymptotic formula for the number of points of bounded height on these vrieties. Finally, in the last part, we generalize the methods developed in the last two part to treat the case of hypersurfaces of complete non-singular toric vareties whose effective cone is simplicial. This permits to prove the conjecture of batyrev-Manin-Peyre for these varieties.
|
6 |
Fonctions zêta des hauteurs des variétés toriques en caractéristique positiveBOURQUI, David 07 November 2003 (has links) (PDF)
Nous étudions le comportement analytique de la fonction zêta associée à une certaine hauteur anticanonique sur une variété torique projective et lisse, le corps de définition étant un corps global de caractéristique positive. Ce comportement est étroitement lié à l'évolution asymptotique du nombre de points de hauteur bornée sur la variété. Manin et ses collaborateurs ont proposé des formules conjecturales pour le nombre de points de hauteur bornée sur une variété de Fano ou presque de Fano. Dans le cas des variétés toriques définies sur un corps de nombres ces formules ont été démontrées par Batyrev et Tschinkel, puis redémontrées par Salberger sous des hypothèses plus restrictives mais par une méthode entièrement différente. Nous nous intéressons donc dans cette thèse à la version fonctionnelle de ces résultats. Nous commençons par traiter le cas d'une variété torique déployée, en nous inspirant de la méthode de Salberger, basée sur une paramétrisation des points rationnels donnée par les torseurs universels ainsi que sur une inversion de Möbius. Nous expliquons ensuite comment les techniques utilisées dans cette situation peuvent s'appliquer aussi à un contexte motivique, mais notre calcul repose en partie sur une hypothèse non demontrée. Enfin pour examiner le cas de la compactification d'un tore non déployé nous adaptons au cas fonctionnel l'approche de Batyrev et Tshinkel. Leur idée est d'utiliser la formule de Poisson pour obtenir une représentation intégrale de la fonction zêta des hauteurs, intégrale que l'on évalue à l'aide du théorème des résidus. Nous obtenons une formule conforme aux prédictions de Manin et al., modulo le calcul d'un invariant du tore, invariant spécifique à la caractéristique non nulle. Nous n'avons pu mener à bien le calcul de cet invariant que pour des familles particulières de tores algébriques, et dans ce cas la formule obtenue est celle attendue. La question de savoir si la situation est la même pour un tore algébrique quelconque reste ouverte.
|
7 |
Représentations d'algèbres de Lie dans des groupes de cohomologie à supportTCHOUDJEM, Alexis 20 December 2002 (has links) (PDF)
On s'intéresse aux groupes de cohomologie à support de faisceaux sur des variétés algébriques. On étudie surtout, pour des fibrés en droites sur des variétés où opère un groupe réductif $G$, la cohomologie à support dans certaines sous-variétés invariantes par l'action d'un sous-groupe de Borel de $G$. On obtient ainsi des représentations de l'algèbre de Lie de $G$ que l'on analyse : on en donne des filtrations dont le gradué associé fait apparaître des ``modules de Verma généralisés''. Grâce au complexe de Grothendieck-Cousin, cette étude permet de retrouver le théorème de Borel-Weil-Bott sur les variétés de drapeaux et aussi de déterminer tous les groupes de cohomologie des fibrés en droites sur les compactifications $G \times G-$équivariantes de $G$ (en particulier sur les compactifications magnifiques). Cela généralise la description bien connue des groupes de cohomologie des fibrés en droites sur les variétés toriques complètes.
|
8 |
Déformation et quantification par groupoïde des variétés toriquesCadet, Frédéric 30 November 2001 (has links) (PDF)
Cette thèse propose une notion de quantification par déformation des variétés de Poisson au sens des C*-algèbres, en lien notamment avec l'emploi de groupoïdes. Cette théorie s'appuie sur des exemples, notamment celui des variétés toriques. La première partie est un rappel de connaissances développées depuis quelques dizaines d'années sur les groupoïdes et leurs C*-algèbres. La deuxième partie présente les définitions de déformation et de quantification utilisées ensuite, et leur traduction, pour les groupoïdes, dans la notion importante de groupoïde de déformation. Une large classe de sous-groupoïdes des groupoïdes de Lie est de ce type. Enfin le résultat principal de cette thèse est une condition suffisante sur les variétés M munies de l'action d'un tore Tn pour construire un groupoïde de déformation associé, au moyen du choix d'une action de Rn sur une variété contenant le quotient M/Tn ; ce groupoïde se présente comme un sous-groupoïde du groupoïde de l'action d'un groupe discret. On retrouve alors des résultats de quantification connus pour Cn, les tores et les sphères de dimension 4 non commutatifs. La troisième partie applique ce résultat à l'exemple des variétés toriques, dont la géométrie étonnante, en terme de moment notamment, fut découverte dans les années 80. Cette construction fournit le premier exemple de quantification des variétés toriques dans un cadre C*-algebrique, même dans les cas les plus simples (sphère de dimension 2, espaces projectifs complexes).
|
9 |
Quelques aspects combinatoires et arithmétiques des variétés toriques complètesGuilbot, Robin 17 September 2012 (has links) (PDF)
Dans cette thèse nous étudions deux aspects distincts des variétés toriques, l'un purement géométrique, sur C, et l'autre de nature arithmétique, sur des corps quasi algébriquement clos (corps C1). Les courbes extrémales qui engendrent le cône de Mori d'une variété torique projective sont des courbes primitives (V. Batyrev). En 2009, D. Cox et C. von Renesse ont conjecturé que les courbes primitives engendrent le cône de Mori de toute variété torique dont l'éventail est à support convexe, de dimension maximale. Nous présentons une famille de contre-exemples à cette conjecture et en proposons une nouvelle formulation basée sur la notion de contractibilité locale, généralisant la notion de contractibilité de C. Casagrande. Grâce aux couloirs, outils combinatoires que nous introduisons, nous montrons comment écrire une classe de 1-cycle donnée comme combinaison linéaire à coefficients entiers de classes de courbes toriques. Les couloirs nous permettent de donner une décomposition explicite de toute classe qui n'est pas contractible (couloirs droits) ainsi que de certaines classes contractibles (couloirs circulaires). Les corps C1 sont les corps sur lesquels l'existence de points rationnels dans une variété Y est assurée par le plongement en petit degré de Y dans un espace projectif (par définition) ou dans un espace projectif pondéré (d'après un théorème facile de Kollar). Pour un diviseur ample dans une variété torique dont l'éventail est simplicial et complet, nous montrons qu'il existe encore une notion de petit degré qui assure l'existence de points rationnels. Ceci nous permet notamment de montrer l'existence de points rationnels sur une large classe de variétés rationnellement connexes.
|
10 |
Height of cycles in toric varieties / Hauteur de cycles de variétés toriquesGualdi, Roberto 20 September 2018 (has links)
Nous étudions dans cette thése la relation entre certaines hauteurs d'Arakelov de cycles de variétés toriques et les caractéristiques arithmétiques des polynômes de Laurent qui les définissent. Pour cela, nous associons _a un polynôme de Laurent des fonctions concaves que nous appelons fonctions de Ronkin et fonctions supérieures. Nous donnons des bornes supérieures pour la hauteur d'une intersection compléte faisant intervenir les fonctions supérieures associées. Dans le cas d'une hypersurface, nous montrons une formule liant sa hauteur _a la fonction de Ronkin de son polynôme de Laurent. Nous proposons une égalité analogue pour des hauteurs moyennes appropriées en codimension supérieure et nous indiquons une stratégie pour la preuve d'un cas particulier. Dans ces travaux, nous utilisons des notions de géométrie convexe telles que les polytopes, les mesures de Monge-Ampére réelles et la dualité de Legendre- Fenchel de fonctions concaves. Nous les présentons dans un cadre algébrique adapté et nous développons l'étude des intégrales mixtes. / We investigate in this work the relation between suitable Arakelov heights of a cycle in a toric variety and the arithmetic features of its defining Laurent polynomials. To this purpose, we associate to a Laurent polynomial certain concave functions which we call Ronkin functions and upper functions. We give upper bounds for the height of a complete intersection in terms of the associated upper functions. For a hypersurfaces, we prove a formula relating its height to the Ronkin function of the associated Laurent polynomial. We conjecture an analogous equality for a suitable average height in higher codimensions and indicate a strategy for the proof of a particular case. In all the treatment, we deal with convex geometrical objects such as polytopes, real Monge-Ampère measures and Legendre-Fenchel duality of concave functions. We suggest an algebraic framework for such a study and deepen the understanding of mixed integrals.
|
Page generated in 0.0554 seconds