• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 82
  • 82
  • 20
  • 18
  • 12
  • 12
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

High-precision time-domain astrophysics in crowded star-fields with ground based telescopes : globular clusters and the mitigation of the atmospheric turbulence

Figuera Jaimes, Roberto Jose January 2018 (has links)
We carried out a three year (2013-2015) observational campaign at the Danish 1.54-m Telescope at the ESO observatory at La Silla in Chile in which we obtained ~1000 astronomical images in the field of 11 Galactic globular clusters. The selection of these stellar systems was focused mainly on the visibility of the targets and their relevant physical properties available in the catalogues, among them were considered the density, variable stars known, colour-magnitude diagrams, and luminosity. The telescope was equipped with an electron-multiplying CCD (EMCCD) with the aim of taking very short exposure-time images. The camera was configured to take 10 frames per second. Due to this, the brighter stars observed were not affected by saturation, it helped to give higher signal to noise ratio to the fainter stars and, importantly, it minimised the effects of the atmospheric turbulence such as blending between stars in the crowded fields. To produce normal-exposure-time images (minutes) we implemented the shift-and-add technique that also enabled us to produce images with better angular resolution than previously achieved with conventional CCDs on ground-based telescopes, and even enabled us to produce images with angular resolution close to that obtained with space telescopes. The detection of the stars in each of the globular clusters and the photometry was performed via difference image analysis by using the DanDIA pipeline whose procedures and mathematical techniques have been demonstrated to produce high-precision time-series photometry of very crowded stellar regions. We produced time-series photometry for ~15000 stars in the fields observed which were statistically analysed in order to automatically extract variable stars. Our aim is to complete, or improve, the census of the variable star population in the globular clusters. In NGC 6715, we found light curves for 17 previously known variable stars near the edges of our reference image (16 RR Lyrae and 1 semi-regular) and we discovered 67 new variables (30 RR Lyrae, 21 long-period irregular, 3 semi-regular, 1 W Virginis, 1 eclipsing binary, and 11 unclassified). This cluster was particularly interesting because apart from the results obtained, it shows the benefits of using the EMCCD cameras and the shift-and-add technique. It is a cluster studied several times including data obtained with the OGLE survey and also with the Hubble Space Telescope and our discoveries were still new. Our new RR Lyrae star discoveries help confirm that NGC 6715 is of intermediate Oosterhoff type. In the other 10 globular clusters, we obtained light curves for 31 previously known variable stars (3 L, 2 SR, 20 RR Lyrae, 1 SX Phe, 3 cataclysmic variables, 1 EW and 1 NC) and we discovered 30 new variables (16 L, 7 SR, 4 RR Lyrae, 1 SX Phe and 2 NC). In NGC 6093, we analysed the famous case of the 1860 Nova, for which no observations of the Nova in outburst have been made until the present study. Ephemerides and photometric measurements for the variable stars are available in electronic form through the Strasbourg Astronomical Data Centre.
52

Applications of time series modelling to variable star astronomy

Koen, Marthinus Christoffel 11 September 2012 (has links)
D.Phil. / During the last few years the number of known variable stars which show periodic light level changes has grown by several tens of thousands. The aim of the research reported here was to extend the suite of statistical methods available for the analysis of periodic variable star time series. Solution techniques for five problems are discussed. The first is an automated method for detecting periodic variable stars from a database containing of the order of 100 000 time series of observations. Typically only 100-200 brightness measurements of each star were obtained, spread irregularly over an interval of about 3 years. The proposed method is based on a signal to noise ratio. Percentiles for the statistic are found by studying randomisations of a large number of the observed time series. It is shown that the percentiles depend strongly on the number of observations in a given dataset, and the dependence is calibrated empirically. The estimation of the frequency, amplitude and phase of a sinusoid from observations contaminated by correlated noise is the second problem considered. The study of the observational noise properties of nearly 200 real datasets of the relevant type is reported: noise can almost always be characterised as a random walk with superposed white noise. A scheme for obtaining weighted nonlinear least squares estimates of the parameters of interest, as well as standard errors of these estimates, is described. Simulation results are presented for both complete and incomplete data, and an application to real observations is also shown. In the third topic discussed it is assumed that contemporaneous measurements of the light in-tensity of a pulsating star is obtained in several colours. There is strong theoretical interest in a comparison of the amplitudes and phases of the variations in the different colours. A general scheme for calculating the covariance matrix of the estimated amplitude ratios and phase differences is described. The first step is to fit a time series model to the residuals after subtracting the best-fitting sinusoid from the observations. The residuals are then crosscorrelated to study the interdependence between the errors in the different colours. Once the multivariate time series structure can be modelled, the covariance matrix can be found by bootstrapping. An illustrative application is described in detail. The times between successive instances of maximum brightness, or the times between successive brightness minima, serve as estimates for the periods of the so-called "long period variables" (stars with pulsation periods of the order of months). The times between successive maxima (or minima) vary stochastically, and are also subject to measurement errors, which poses a problem for tests for systematic period changes — the topic of the fourth problem studied. A simple statistical model for the times between successive maxima, or minima, of such stars is used to calculate the auto-correlation properties of a new time series, which is non-stationary in its variance. The new series consists of an alternation of cycle lengths based on respectively the times between maxima, and those between minima of the light curve. Two different approaches to calculating the theoretical spectrum of the non-stationary time series, as required in the proposed statistical hypothesis test, are given. Illustrative applications complete the relevant chapter.
53

Optical Polarization Observations of Epsilon Aurigae During the 2009-2011 Eclipse

Henson, Gary D., Burdette, John, Gray, Sharon 29 May 2012 (has links)
Polarization observations of the unique eclipsing binary, Epsilon Aurigae, are being carried out using a new dual beam imaging polarimeter on the 0.36m telescope of the Harry D. Powell Observatory. This bright binary system has a 27.1 year period with an eclipse duration of nearly two years. The primary is known to be a pulsating F0 supergiant with the secondary a large and essentially opaque disk. We report here on the characteristics of the polarimeter and on the status of V-band observations that are being obtained to better understand the system's geometry and the nature of its two components. In particular, the characteristics of the secondary disk remain a puzzle. Results are compared to polarization observations from the 1982-1984 eclipse.
54

Searching For New Long-Period Variable Stars in the Globular Cluster M107

Chapman, Justin 29 August 2022 (has links)
No description available.
55

Pulsation Properties of Long Period Variable Stars in Globular Cluster NGC 6553

Kager, Elisabeth 18 August 2010 (has links)
No description available.
56

Properties of Bright Variable Stars in Unusual Metal Rich Cluster NGC 6388

Cardona Velasquez, Gustavo Adolfo 23 June 2011 (has links)
No description available.
57

A search for Long-Period Variable Stars in the Globular Cluster NGC 6496

Abbas, Mohamad 27 June 2011 (has links)
No description available.
58

Modelling of eclipsing binaries

Skelton, Patricia Leigh 08 1900 (has links)
W Ursae Majoris-type (W UMa-type) variable stars are contact eclipsing binary stars whose evolution is unknown. Modelling to determine the physical parameters of as many W UMa-type variable stars as possible might provide some insight as to how these contact binaries form and evolve. The All Sky Automated Survey (ASAS) has discovered over ve thousand of these systems. Using data from the ASAS and from the Wide Angle Search for Planets (SuperWASP) project, models of selected ASAS contact binaries are being created to determine their physical parameters. Some W UMa-type variable stars are known to undergo changes in orbital period. For selected ASAS contact binaries, a period analysis has been performed using SuperWASP data to determine if the systems are undergoing changes in orbital period. Results of the modelling and period analyses of selected systems are presented. / Thesis (M. Sc. (Astronomy))
59

Spectroscopic Mode Identifications of Three γ Doradus Stars

Davie, Matthew Wilton January 2013 (has links)
We present the modes identified for frequencies found in spectroscopic observations of the Doradus stars HD 189631, QW Puppis, and IR Draconis. A cross-correlation tech- nique was used to create mean line profiles for HD 189631. Four frequencies and modes were identified for this star: 1.6774±0.0002 d⁻¹, 1.4174±0.0002 d⁻¹, 0.0714±0.0002 d⁻¹, and 1.8228 ± 0.0002 d⁻¹ which were identified with the modes (l,m) = (1, +1), (1, +1), (2,−2), and (1, +1) respectively. A least-squares deconvolution method was implemented for line profile generation in the study of QW Puppis and IR Draconis. Three frequen- cies were identified for QW Puppis: 0.055972 ± 0.000004 d⁻¹, 0.064846 ± 0.000004, and 5.219398±0.000002 d⁻¹. These frequencies were identified with the modes (l,m) = (1,−1), (4,−1), (4, +1). Two frequencies were identified in spectra of the rapidly rotating star IR Draconis: 0.00515 ± 0.00003 d⁻¹ and 2.35538 ± 0.00004 d⁻¹; which were identified with (l,m) = (1,−1), and (1, +1) modes respectively. These mode identifications will assist in modelling the structure and interior conditions of these main sequence, non-radially pulsating stars.
60

Cepheid Variables and their Application to the Cosmological Distance Scale

Hoffmann, Samantha L 03 October 2013 (has links)
In the current era of “precision cosmology”, measuring the expansion rate of the Universe (Hubble constant, or H0) more accurately and precisely helps to better constrain the properties of dark energy. Cepheid-based distances are a critical step in the Extragalactic Distance Scale and have been recently used to measure H0 with a total uncertainty of only 3.4%. I will present my work on Cepheid variables in three different galaxies as part of this effort. NGC 4258 is a galaxy with a very precise and accurate distance (3% uncertainty) based on radio interferometric observations of water masers orbiting its central massive black hole. Therefore, it can be used to obtain a robust absolute calibration of the Cepheid Period-Luminosity relation. I analyzed observations of NGC 4258 obtained at Gemini North over four years and increased the number of long-period Cepheids (P>45 days) known in this galaxy. NGC 5584 was the host of type Ia SN 2007af. I applied a difference imaging technique to Hubble Space Telescope (HST) observations of this galaxy and discovered several hundred Cepheids. I compared my results with previous work based on traditional PSF photometry. The distance estimates of the two samples matched within the errors of the measurements, and so the difference imaging technique was a success. Additionally, I validated the first “white-light” variability search with the HST F350LP filter for discovering Cepheids. NGC 4921 is located in the heart of the Coma cluster at a distance of about 100 Mpc. I conducted a search for Cepheid variables using HST, extending the reach of Hubble by a factor of 3 relative to previous Cepheid work. Since Coma is in the Hubble flow, this approach eliminates the need for a secondary distance indicator and enables a direct determination of H0 based exclusively on a Cepheid distance. I present preliminary results from this challenging project.

Page generated in 0.0775 seconds