21 |
High precision motion control based on a discrete-time sliding mode approachLi, Yufeng January 2001 (has links)
No description available.
|
22 |
Variable Structure And Dynamism Extensions To A Devs Based Modeling And Simulation FrameworkDeniz, Fatih 01 February 2010 (has links) (PDF)
In this thesis, we present our approach to add dynamism support to simulation environments, which adopts DEVS-based modeling and simulation approach and builds upon previous work on SiMA, a DEVS-based simulation framework developed at TUBITAK UEKAE. Defining and executing simulation models of complex and adaptive systems is often a non-trivial task. One of the requirements of simulation software frameworks for such complex and adaptive systems is that supporting variable structure models, which can change their behavior and structure according to the changing
conditions. In the relevant literature there are already proposed solutions to the dynamism support problem. One particular contribution offered in this study over previous approaches is the systematic and automatic framework support for poststructural-change state synchronization among models with related couplings, in a way that benefits from the strongly-typed execution environment SiMA provides. In this study, in addition to introducing theoretical extensions to classic SiMA, performance comparisons of dynamic version with classic version over a sample Wireless Sensor Network simulation is provided and possible effects of dynamism extensions to the performance are discussed.
|
23 |
Design of the nth Order Adaptive Integral Variable Structure Derivative EstimatorShih, Wei-Che 17 January 2009 (has links)
Based on the Lyapunov stability theorem, a methodology of designing an nth order adaptive integral variable structure derivative estimator (AIVSDE) is proposed in this thesis. The proposed derivative estimator not only is an improved version of the existing AIVSDE, but also can be used to estimate the nth derivative of a smooth signal which has continuous and bounded derivatives up to n+1. Analysis results show that adjusting some of the parameters can facilitate the derivative estimation of signals with higher frequency noise. The adaptive algorithm is incorporated in the estimation scheme for tracking the unknown upper bounded of the input signal as well as their's derivatives. The stability of the proposed derivative estimator is guaranteed, and the comparison between recently proposed derivative estimator of high-order sliding mode control and AIVSDE is also demonstrated.
|
24 |
High precision motion control based on a discrete-time sliding mode approachLi, Yufeng January 2001 (has links)
No description available.
|
25 |
Using fuzzy logic to enhance control performance of sliding mode control and dynamic matrix controlSanchez, Edinzo J. Iglesias 01 June 2006 (has links)
Two application applications of Fuzzy Logic to improve the performance of two controllers are presented. The first application takes a Sliding Mode Controller designed for chemical process to reject disturbances. A fuzzy element is added to the sliding surface to improve the controller performance when set point change affects the control loop; especially for process showing highly nonlinear behavior. This fuzzy element, , is calculated by means of a set of fuzzy rules designed based on expert knowledge and experience. The addition of improved the controller response because accelerate or smooth the controller as the control loop requires. The Fuzzy Sliding Mode Controller (FSMCr) is a completely general controller. The FSMCr was tested with two models of nonlinear process: mixing tank and neutralization reactor. In both cases the FSMCr improves the performance shown for other control strategies, as the industrial PID, the conventional Sliding Mode Control and the Stan
dard Fuzzy Logic Controller. The second part of this research presents a new way to implement the Dynamic Matrix Control Algorithm (DMC). A Parametric structure of DMC (PDMC) control algorithm is proposed, allowing to the controller to adapt to process nonlinearities. For a standard DMC a process model is used to calculate de controller response. This model is a matrix calculated from the dynamic response of the process at open loop. In this case the process parameters are imbibed into the matrix. The parametric structure isolates the process parameters allowing adjust the model as the nonlinear process changes its behavior. A Fuzzy supervisor was developed to detect changes in the process and send taht [sic]information to the PDMCr. The modeling error and other parameters related were used to estimate those changes. Some equations were developed to calculate the PDMCr tuning parameter,lambda, as a function of the process parameters. The performance of PDMCr was tested using to model
of nonlinear process and compare with the standard DMC; in most the cases PDMCr presents less oscillations and tracks with less error the set point. Both control strategies presented in this research can be implemented into industrial applications easily.
|
26 |
Variable Structure Control based FACTS Controller DesignGang Cao Unknown Date (has links)
Along with the increasing scale of the power system and stressed operation in the transmission network, the stability margin is reduced considerably. As a traditional solution, the constructions of new transmission lines and generators sometimes are constrained by local environmental and regulatory constraints. Another characteristic of a modern network is the higher number of transmission inter-connections which appear in the large-scale power system. As an economic benefit, inter-connection can reduce the cost of electricity and enhance system reliability [1]. Those inter-connected tie lines are operated normally under heavy flow to maximize the usage benefit. This characteristic contributes to the complexity of operating and controlling the system. In recent years, along with the development of power electronic devices, the Flexible AC Transmission Systems (FACTS) has been used in the system as an alternative solution. It can maximize the usage benefit of the HV transmission line and make the large-scale power system more controllable. By using FACTS devices, the system can survive serious system contingencies with real-time control action, instead of providing a large steady state stability margin. Therefore, the system transfer capacity can be significantly increased. Electromechanical oscillations are observed in today's power system; such oscillations are recognized as a major concern in power system operation. Once begun, the oscillations may continue for a while before being halted by the damping torque from the system, or they may continue to grow (inadequate damping) and eventually cause system instability by losing synchronicity. The traditional and widely applied solution for oscillation damping is the Power System Stabilizer (PSS), which is efficient in damping local mode oscillation and inter-area oscillation in certain conditions. In recent years, research and development of the application of FACTS devices in suppressing system oscillations, especially for inter-area mode oscillation damping, has attracted increasing interest [1]. The primary objective of this thesis is to design robust FACTS controllers for enhancing power system dynamic stability by damping low frequency electromechanical oscillations. Recently, various nonlinear control techniques have been applied in power system control. The performance of nonlinear controllers is influenced by the parameter uncertainty and external disturbance. This thesis will present a novel approach of a robust Variable Structure Control (VSC)-based FACTS controller for damping multi-mode oscillations. Robust performances of the proposed controllers in different power systems are demonstrated by computer simulation.
|
27 |
Arquitetura microcontrolada programável aplicada ao controle de um servoposicionador pneumáticoCukla, Anselmo Rafael January 2012 (has links)
O presente trabalho aborda o desenvolvimento de um sistema eletrônico de controle em tempo real para servoposicionadores pneumáticos baseado em microcontroladores. Os servoposicionadores pneumáticos, por apresentarem características tais como baixo preço, por serem não poluentes e de fácil utilização, além de apresentarem boa relação peso/potência, são atraentes para utilização na área de robótica. Entretanto, devido às suas não-linearidades inerentes, os servoposicionadores pneumáticos apresentam dificuldades que devem ser superadas para a sua adequada utilização em atividade de posicionamento preciso. Assim, visando compensá-las, estão sendo atualmente desenvolvidos algoritmos e técnicas cada vez mais complexas que exigem, por isso, ferramentas programáveis de controle com cada vez maior poder de processamento. Este trabalho apresenta, a partir de uma revisão bibliográfica, as soluções mais utilizadas para o controle digital de sistemas automáticos e de estudos sobre os dispositivos e componentes disponíveis no mercado, uma proposta econômica para o controle em tempo real de servoposicionadores pneumáticos. Para verificar a eficiência da solução proposta, a arquitetura de controle desenvolvida foi utilizada para o controle de um servoposicionador pneumático. Para tanto, projetou-se e programou-se o tradicional controlador linear PID (Proporcional – Integral – Derivativo) e o controle não linear a estrutura variável baseado em modos deslizantes (Slide Mode Control). A partir dos resultados apresentados e das suas discussões pode-se avaliar o desempenho da arquitetura desenvolvida no controle do servoposicionador pneumático. / This work discusses the development of an electronic real-time control system for microcontroller-based pneumatic servopositioners. The servopositioners offer attractive characteristics for use in robotics, such as low price, non-polluting operation, being easy to use and with a good power/weight ratio. However, due to their inherent non-linearities, the servopositioners present difficulties in precise positioning applications. To compensate these difficulties, the use of complex algorithms and new techniques are currently being availed, requiring hardware for programmable control with increasing processing power. This paper presents an economic proposal for real-time control of servopositioners, starting from a literature review of the most popular solutions for digital control of automated systems and from studies of devices and commercial components currently available. To verify the efficiency of the proposed solution, the control architecture developed was used for the control of a pneumatic servopositioner. Therefore, we designed and programmed a traditional linear controller PID (Proportional – Integral – Derivative) and a nonlinear control based on variable structure sliding mode (Slide Mode Control). The results obtained in trajectory tracking tests were used to evaluate the performance of the developed architecture.
|
28 |
Arquitetura microcontrolada programável aplicada ao controle de um servoposicionador pneumáticoCukla, Anselmo Rafael January 2012 (has links)
O presente trabalho aborda o desenvolvimento de um sistema eletrônico de controle em tempo real para servoposicionadores pneumáticos baseado em microcontroladores. Os servoposicionadores pneumáticos, por apresentarem características tais como baixo preço, por serem não poluentes e de fácil utilização, além de apresentarem boa relação peso/potência, são atraentes para utilização na área de robótica. Entretanto, devido às suas não-linearidades inerentes, os servoposicionadores pneumáticos apresentam dificuldades que devem ser superadas para a sua adequada utilização em atividade de posicionamento preciso. Assim, visando compensá-las, estão sendo atualmente desenvolvidos algoritmos e técnicas cada vez mais complexas que exigem, por isso, ferramentas programáveis de controle com cada vez maior poder de processamento. Este trabalho apresenta, a partir de uma revisão bibliográfica, as soluções mais utilizadas para o controle digital de sistemas automáticos e de estudos sobre os dispositivos e componentes disponíveis no mercado, uma proposta econômica para o controle em tempo real de servoposicionadores pneumáticos. Para verificar a eficiência da solução proposta, a arquitetura de controle desenvolvida foi utilizada para o controle de um servoposicionador pneumático. Para tanto, projetou-se e programou-se o tradicional controlador linear PID (Proporcional – Integral – Derivativo) e o controle não linear a estrutura variável baseado em modos deslizantes (Slide Mode Control). A partir dos resultados apresentados e das suas discussões pode-se avaliar o desempenho da arquitetura desenvolvida no controle do servoposicionador pneumático. / This work discusses the development of an electronic real-time control system for microcontroller-based pneumatic servopositioners. The servopositioners offer attractive characteristics for use in robotics, such as low price, non-polluting operation, being easy to use and with a good power/weight ratio. However, due to their inherent non-linearities, the servopositioners present difficulties in precise positioning applications. To compensate these difficulties, the use of complex algorithms and new techniques are currently being availed, requiring hardware for programmable control with increasing processing power. This paper presents an economic proposal for real-time control of servopositioners, starting from a literature review of the most popular solutions for digital control of automated systems and from studies of devices and commercial components currently available. To verify the efficiency of the proposed solution, the control architecture developed was used for the control of a pneumatic servopositioner. Therefore, we designed and programmed a traditional linear controller PID (Proportional – Integral – Derivative) and a nonlinear control based on variable structure sliding mode (Slide Mode Control). The results obtained in trajectory tracking tests were used to evaluate the performance of the developed architecture.
|
29 |
Arquitetura microcontrolada programável aplicada ao controle de um servoposicionador pneumáticoCukla, Anselmo Rafael January 2012 (has links)
O presente trabalho aborda o desenvolvimento de um sistema eletrônico de controle em tempo real para servoposicionadores pneumáticos baseado em microcontroladores. Os servoposicionadores pneumáticos, por apresentarem características tais como baixo preço, por serem não poluentes e de fácil utilização, além de apresentarem boa relação peso/potência, são atraentes para utilização na área de robótica. Entretanto, devido às suas não-linearidades inerentes, os servoposicionadores pneumáticos apresentam dificuldades que devem ser superadas para a sua adequada utilização em atividade de posicionamento preciso. Assim, visando compensá-las, estão sendo atualmente desenvolvidos algoritmos e técnicas cada vez mais complexas que exigem, por isso, ferramentas programáveis de controle com cada vez maior poder de processamento. Este trabalho apresenta, a partir de uma revisão bibliográfica, as soluções mais utilizadas para o controle digital de sistemas automáticos e de estudos sobre os dispositivos e componentes disponíveis no mercado, uma proposta econômica para o controle em tempo real de servoposicionadores pneumáticos. Para verificar a eficiência da solução proposta, a arquitetura de controle desenvolvida foi utilizada para o controle de um servoposicionador pneumático. Para tanto, projetou-se e programou-se o tradicional controlador linear PID (Proporcional – Integral – Derivativo) e o controle não linear a estrutura variável baseado em modos deslizantes (Slide Mode Control). A partir dos resultados apresentados e das suas discussões pode-se avaliar o desempenho da arquitetura desenvolvida no controle do servoposicionador pneumático. / This work discusses the development of an electronic real-time control system for microcontroller-based pneumatic servopositioners. The servopositioners offer attractive characteristics for use in robotics, such as low price, non-polluting operation, being easy to use and with a good power/weight ratio. However, due to their inherent non-linearities, the servopositioners present difficulties in precise positioning applications. To compensate these difficulties, the use of complex algorithms and new techniques are currently being availed, requiring hardware for programmable control with increasing processing power. This paper presents an economic proposal for real-time control of servopositioners, starting from a literature review of the most popular solutions for digital control of automated systems and from studies of devices and commercial components currently available. To verify the efficiency of the proposed solution, the control architecture developed was used for the control of a pneumatic servopositioner. Therefore, we designed and programmed a traditional linear controller PID (Proportional – Integral – Derivative) and a nonlinear control based on variable structure sliding mode (Slide Mode Control). The results obtained in trajectory tracking tests were used to evaluate the performance of the developed architecture.
|
30 |
The 2nd-Order Smooth Variable Structure Filter (2nd-SVSF) for State Estimation: Theory and ApplicationsAfshari, Hamedhossein 06 1900 (has links)
Kalman-type filtering methods are mostly designed based on exact knowledge of the system’s model with known parameters. In real applications, there may be considerable amount of uncertainties about the model structure, physical parameters, level of noise, and initial conditions. In order to overcome such difficulties, robust state estimation techniques are recommended. This PhD thesis presents a novel robust state estimation method that is referred to as the 2nd-order smooth variable structure filter (2nd-order SVSF) and satisfies the first and second order sliding conditions. It is an extension to the 1st-order SVSF introduced in 2007. In the 1st-order SVSF chattering is reduced by using a smoothing boundary layer; however, the 2nd-order SVSF alleviates chattering by preserving the second order sliding condition. It reduces the estimation error and its first difference until the existence boundary layer is reached. Then after, it guarantees that the estimation error and its difference remain bounded given bounded noise and modeling uncertainties. As such, the 2nd-order SVSF produces more accurate and smoother state estimates under highly uncertain conditions than the 1st-order version. The main issue with the 2nd-order SVSF is that it is not optimal in the mean square error sense.
In order to overcome this issue, the dynamic 2nd-order SVSF is initially presented based on a dynamic sliding mode manifold. This manifold introduces a variable cut-off frequency coefficient that adjusts the filter bandwidth. An optimal derivation of the 2nd-order SVSF is then obtained by minimizing the state error covariance matrix with respect to the cut-off frequency matrix. An experimental setup of an electro-hydrostatic actuator is used to compare the performance of the 2nd-order SVSF and its optimal version with other estimation methods such as the Kalman filter and the 1st-order SVSF. Experiments confirm the superior performance of the 2nd-order SVSF given modeling uncertainties. / Thesis / Doctor of Philosophy (PhD)
|
Page generated in 0.0837 seconds