• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Combined solar and pellet heating systems for single-family houses : How to achieve decreased electricity usage, increased system efficiency and increased solar gains

Persson, Tomas January 2006 (has links)
In Sweden, there are about 0.5 million single-family houses that are heated by electricity alone, and rising electricity costs force the conversion to other heating sources such as heat pumps and wood pellet heating systems. Pellet heating systems for single-family houses are currently a strongly growing market. Future lack of wood fuels is possible even in Sweden, and combining wood pellet heating with solar heating will help to save the bio-fuel resources. The objectives of this thesis are to investigate how the electrically heated single-family houses can be converted to pellet and solar heating systems, and how the annual efficiency and solar gains can be increased in such systems. The possible reduction of CO-emissions by combining pellet heating with solar heating has also been investigated. Systems with pellet stoves (both with and without a water jacket), pellet boilers and solar heating have been simulated. Different system concepts have been compared in order to investigate the most promising solutions. Modifications in system design and control strategies have been carried out in order to increase the system efficiency and the solar gains. Possibilities for increasing the solar gains have been limited to investigation of DHW-units for hot water production and the use of hot water for heating of dishwashers and washing machines via a heat exchanger instead of electricity (heat-fed appliances). Computer models of pellet stoves, boilers, DHW-units and heat-fed appliances have been developed and the parameters for the models have been identified from measurements on real components. The conformity between the models and the measurements has been checked. The systems with wood pellet stoves have been simulated in three different multi-zone buildings, simulated in detail with heat distribution through door openings between the zones. For the other simulations, either a single-zone house model or a load file has been used. Simulations were carried out for Stockholm, Sweden, but for the simulations with heat-fed machines also for Miami, USA. The foremost result of this thesis is the increased understanding of the dynamic operation of combined pellet and solar heating systems for single-family houses. The results show that electricity savings and annual system efficiency is strongly affected by the system design and the control strategy. Large reductions in pellet consumption are possible by combining pellet boilers with solar heating (a reduction larger than the solar gains if the system is properly designed). In addition, large reductions in carbon monoxide emissions are possible. To achieve these reductions it is required that the hot water production and the connection of the radiator circuit is moved to a well insulated, solar heated buffer store so that the boiler can be turned off during the periods when the solar collectors cover the heating demand. The amount of electricity replaced using systems with pellet stoves is very dependant on the house plan, the system design, if internal doors are open or closed and the comfort requirements. Proper system design and control strategies are crucial to obtain high electricity savings and high comfort with pellet stove systems. The investigated technologies for increasing the solar gains (DHW-units and heat-fed appliances) significantly increase the solar gains, but for the heat-fed appliances the market introduction is difficult due to the limited financial savings and the need for a new heat distribution system. The applications closest to market introduction could be for communal laundries and for use in sunny climates where the dominating part of the heat can be covered by solar heating. The DHW-unit is economical but competes with the internal finned-tube heat exchanger which is the totally dominating technology for hot water preparation in solar combisystems for single-family houses.
2

Laststyrning av eluppvärmning och varmvattenberedning : En studie av potentialen för hushåll att bidra till en sänkt abonnerad effekt mot överliggande elnät / Load control of electrical space and water heating : A study of the potential in detached houses to contribute to a lower subscripted power of the overhead grid

Ahlm, Niklas January 2021 (has links)
This study has explored the potential for lowering the subscripted power of 25 MW for one of the connection points between the local power grid and its overhead power grid for a local grid owner. The potential for doing so through hard, direct load control of electrical domestic heating and domestic water heating for detached houses with a fuse size of 16-25 A is evaluated for 12 different scenarios. The scenarios are found by combining a customer participation of 25, 50, 75 and 100 percent with a maximum allowed duration for load control of two, three and four hours respectively. A function describing the need for electrical power for domestic heating as dependent of the outdoor temperature is developed and combined with a model that is used for simulating hot water usage and a model that describes the power demand of a domestic water heater. Furthermore, a control function is incorporated to ensure that households are not subjected to load control for a longer period than allowed and that all households bear the same burden in this respect.  The results show that a power of 1,0-4,1 MWh/h can be redistributed, but that the potential is heavily limited by the returning load that occurs. Due to the long duration of the critical peaks that are being redistributed, up to 5-10 hours, returning load occurs even though load control has not yet been finalized. The returning load leads to a bigger amount of power having to be redistributed and therefore limits the potential for the new subscripted power that can be achieved. Furthermore, the maximum aggregated power for the investigated year amounts to 25,9 MW. Still, a new subscripted power of 21,8–24,9 MW is theoretically deemed to be achievable. The most likely outcome however is thought to be a lowering of the subscripted power to at least 23,4–24,4 MW, having taken the composition of type of heating systems as well as the most likely customer participation into account.

Page generated in 0.0901 seconds