• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aplikace teorie her dvou hráčů v ekonomii / Application of Two-Player Game Theory in Economics

Tichá, Michaela January 2011 (has links)
The concern of this thesis is to discuss different applications of two-player game theory in economics. It is divided into two main chapters - the theoretical part and the practical part. The theoretical part is composed of the classical game theory and the game theory with vector payoffs. In the first instance basic ideas of the classical game theory is introduced. Elaboration of the duopoly model follows. Subsequently basic ideas of the theory with vector payoffs and one of the solution concepts of game theory with vector payo s are included. The practical part follows. This part contains two examples which are the real application of the concept described in the theoretical part.
2

Vector-Valued Markov Games / Vektorwertige Markov-Spiele

Piskuric, Mojca 16 April 2001 (has links) (PDF)
The subject of the thesis are vector-valued Markov Games. Chapter 1 presents the idea, that has led to the development of the theory of general stochastic games. The work of Lloyd S. Shapley is outlined, and the most important authors and bibliography are stated. Also, the motivation behind the research of vector-valued game-theoretic problems is presented. Chapter 2 develops a rigorous mathematical model of vector-valued N-person Markov games. The corresponding definitions are stated, and the notations, as well as the notion of a strategy are explained in detail. On the basis of these definitions a probability measure is constructed, in an appropriate probability space, which controls the stochastic game process. Furthermore, as in all models of stochastic control, a payoff is specified, in our case the expected discounted payoff. The principles of vector optimization are stated in Chapter 3, and the concept of optimality with recpect to some convex cone is developed. This leads to the generalization of Nash-equilibria from scalar- to vector-valued games, the so-called D-equilibria. Examples are provided to show, that this definition really is a generalization of the existing definitions for scalar-valued games. For a given convex cone D, necessary and sufficient conditions are found to show, when a strategy is also a D-equilibrium. Furthermore it is shown that a D-equilibrium in stationary strategies exists, as one could expect from the known results from the theory of scalar-valued stochastic games. The main result of this chapter is a generalization of an existing result for 2-person vector-valued Markov games to N-person Markov Games, namely that a D-equilibrium of an N-person Markov game is a subgradient of specially constructed support functions of the original payoff functions. To be able to develop solution procedures in the simplest case, that is, the 2-person zero-sum case, Chapter 4 introduces the Denardo dynamic programming formalism. In the space of all p-dimensional functions we define a dynamic programming operator H? to describe the solutions of Markov games. The first of the two main results in this chapter is the following: the expected overall payoff to player 1, f(??), for a fixed stationary strategy ??, is the fixed point of the operator H?. The second theorem then shows, that the latter result is exactly the vector-valued generalization of the famous Shapley result. These theorems are fundamental for the subsequent development of two algorithms, the successive approximations and the Hoffman-Karp algorithm. A numerical example for both algorithms is presented. Chapter 4 finishes with a discussion on other significant results, and the outline of the further research. The Appendix finally presents the main results from general Game Theory, most of which were used for developing both theoretic and algorithmic parts of this thesis. / Das Thema der vorliegenden Arbeit sind vektorwertige Markov-Spiele. Im Kapitel 1 wird die Idee vorgestellt, die zur Entwicklung genereller stochastischer Spiele geführt hat. Die Arbeit von Lloyd S. Shapley wird kurz dargestellt, und die wichtigsten Autoren und Literaturquellen werden genannt. Es wird weiter die Motivation für das Studium der vektorwertigen Spiele erklärt. Kapitel 2 entwickelt ein allgemeines mathematisches Modell vektorwertiger N-Personen Markov-Spiele. Die entsprechenden Definitionen werden angegeben, und es wird auf die Bezeichnungen, sowie den Begriff einer Strategie eingegangen. Weiter wird im entsprechenden Wahrscheinlichkeitsraum ein Wahrscheinlichkeitsmaß konstruiert, das den zugrunde liegenden stochastischen Prozeß steuert. Wie bei allen Modellen gesteuerter stochastischen Prozesse wird eine Auszahlung spezifiziert, konkret der erwartete diskontierte Gesamtertrag. Im Kapitel 3 werden die Prinzipien der Vektoroptimierung erläutert. Es wird der Begriff der Optimalität bezüglich gegebener konvexer Kegel entwickelt. Dieser Begriff wird weiter benutzt, um die Definition der Nash-Gleichgewichte für skalarwertige Spiele auf unser vektorwertiges Modell, die sogenannten D-Gleichgewichte, zu erweitern. Anhand mehrerer Beispiele wird gezeigt, dass diese Definition eine Verallgemeinerung der existierenden Definitionen für skalarwertige Spiele ist. Weiter werden notwendige und hinreichende Bedingungen hinsichtlich des Optimierungskegels D angegeben, wann eine Strategie ein D-Gleichgewicht ist. Anschließend wird gezeigt, dass man sich ? wie bei Markov'schen Entscheidungsprozessen und skalarwertigen stochastischen Spielen - beim Suchen der D-Gleichgewichte auf stationäre Strategien beschränken kann. Das Hauptresultat dieses Kapitels ist die Verallgemeinerung einer schon bekannten Aussage für 2-Personen Markov-Spiele auf N-Personen Markov-Spiele: Ein D-Gleichgewicht im N-Personen Markov-Spiel ist ein Subgradient speziell konstruierter Trägerfunktionen des Gesamtertrags der Spieler. Um im einfachsten Fall der Markov-Spiele, den Zwei-Personen Nullsummenspielen, ein Lösungskonzept entwickeln zu können, wird im Kapitel 4 die Methode des Dynamischen Programmierens benutzt. Es wird der Denardo-Formalismus übernommen, um einen Operator H? im Raum aller p-dimensionalen vektorwertigen Funktionen zu entwickeln. Die Haputresultate dieses Kapitels sind zwei Sätze über optimale Lösungen, bzw. D-Gleichgewichte. Der erste Satz zeigt, dass für eine fixierte stationäre Strategie ?? der erwartete diskontierte Gesamtertrag f(??) der Fixpunkt des Operators H? ist. Anschließend zeigt der zweite Satz, dass diese Lösung genau der vektorwertigen Erweiterung des Resultats von Shapley entspricht. Anhand dieser Resultate werden nun zwei Algorithmen entwickelt: sukzessive Approximationen und Hoffman-Karp-Algorithmus. Es wird ein numerisches Beispiel für beide Algorithmen berechnet. Kapitel 4 schließt mit dem Abschnitt über weitere Resultate und Ansätze für weitere Forschung. Im Anhang werden die Hauptresultate der statischen Spieltheorie vorgestellt, viele von denen werden in der vorliegenden Arbeit benutzt.
3

Vícekriteriální hry / Multicriteria games

Tichá, Michaela January 2015 (has links)
Theory of multicriteria games is a special field of game theory, when one or more players have at least two payoff functions and want to maximize simultaneously. The work introduces a number of new findings. It examined the concept of finding equilibria in pure strategies in noncooperative multicriteria game. It is possible to find all the equilibria in pure strategies by full search and solving two linear programs for each point. Furthermore, two linear programs are formulated for verifying that a selected point is the equilibrium of the game or not. In the noncooperative games is also introduced the concept that with knowledge of the equilibrium of bimatrix game determines preferences of the players. Although finding the equilibrium point of the bimatrix game is nonlinear problem, finding the preferences is linear problem. The latest findings in the noncooperative games is a generalization of the concept that solves multicriteria game by assigning weights to each criterion of each player. The work demonstrates that it may not be necessarily linear weights, but it can be more general function that describes the player's preference. The remaining part is devoted to knowledge in cooperative games. There is considered that the players know their preferences and are able to express them by weights. The game with known preferences is defined and solved with the use of bargaining theory. Then it is generalized to a case where players have more payoff functions, from which they can choose. Finally, the multicriteria case of voting game is defined. It is designed completely new concept, which selects the winning coalition in the voting game. This concept is then applied to the real situation after the elections to the Chamber of Deputies in 2013.
4

Vector-Valued Markov Games

Piskuric, Mojca 23 April 2001 (has links)
The subject of the thesis are vector-valued Markov Games. Chapter 1 presents the idea, that has led to the development of the theory of general stochastic games. The work of Lloyd S. Shapley is outlined, and the most important authors and bibliography are stated. Also, the motivation behind the research of vector-valued game-theoretic problems is presented. Chapter 2 develops a rigorous mathematical model of vector-valued N-person Markov games. The corresponding definitions are stated, and the notations, as well as the notion of a strategy are explained in detail. On the basis of these definitions a probability measure is constructed, in an appropriate probability space, which controls the stochastic game process. Furthermore, as in all models of stochastic control, a payoff is specified, in our case the expected discounted payoff. The principles of vector optimization are stated in Chapter 3, and the concept of optimality with recpect to some convex cone is developed. This leads to the generalization of Nash-equilibria from scalar- to vector-valued games, the so-called D-equilibria. Examples are provided to show, that this definition really is a generalization of the existing definitions for scalar-valued games. For a given convex cone D, necessary and sufficient conditions are found to show, when a strategy is also a D-equilibrium. Furthermore it is shown that a D-equilibrium in stationary strategies exists, as one could expect from the known results from the theory of scalar-valued stochastic games. The main result of this chapter is a generalization of an existing result for 2-person vector-valued Markov games to N-person Markov Games, namely that a D-equilibrium of an N-person Markov game is a subgradient of specially constructed support functions of the original payoff functions. To be able to develop solution procedures in the simplest case, that is, the 2-person zero-sum case, Chapter 4 introduces the Denardo dynamic programming formalism. In the space of all p-dimensional functions we define a dynamic programming operator H? to describe the solutions of Markov games. The first of the two main results in this chapter is the following: the expected overall payoff to player 1, f(??), for a fixed stationary strategy ??, is the fixed point of the operator H?. The second theorem then shows, that the latter result is exactly the vector-valued generalization of the famous Shapley result. These theorems are fundamental for the subsequent development of two algorithms, the successive approximations and the Hoffman-Karp algorithm. A numerical example for both algorithms is presented. Chapter 4 finishes with a discussion on other significant results, and the outline of the further research. The Appendix finally presents the main results from general Game Theory, most of which were used for developing both theoretic and algorithmic parts of this thesis. / Das Thema der vorliegenden Arbeit sind vektorwertige Markov-Spiele. Im Kapitel 1 wird die Idee vorgestellt, die zur Entwicklung genereller stochastischer Spiele geführt hat. Die Arbeit von Lloyd S. Shapley wird kurz dargestellt, und die wichtigsten Autoren und Literaturquellen werden genannt. Es wird weiter die Motivation für das Studium der vektorwertigen Spiele erklärt. Kapitel 2 entwickelt ein allgemeines mathematisches Modell vektorwertiger N-Personen Markov-Spiele. Die entsprechenden Definitionen werden angegeben, und es wird auf die Bezeichnungen, sowie den Begriff einer Strategie eingegangen. Weiter wird im entsprechenden Wahrscheinlichkeitsraum ein Wahrscheinlichkeitsmaß konstruiert, das den zugrunde liegenden stochastischen Prozeß steuert. Wie bei allen Modellen gesteuerter stochastischen Prozesse wird eine Auszahlung spezifiziert, konkret der erwartete diskontierte Gesamtertrag. Im Kapitel 3 werden die Prinzipien der Vektoroptimierung erläutert. Es wird der Begriff der Optimalität bezüglich gegebener konvexer Kegel entwickelt. Dieser Begriff wird weiter benutzt, um die Definition der Nash-Gleichgewichte für skalarwertige Spiele auf unser vektorwertiges Modell, die sogenannten D-Gleichgewichte, zu erweitern. Anhand mehrerer Beispiele wird gezeigt, dass diese Definition eine Verallgemeinerung der existierenden Definitionen für skalarwertige Spiele ist. Weiter werden notwendige und hinreichende Bedingungen hinsichtlich des Optimierungskegels D angegeben, wann eine Strategie ein D-Gleichgewicht ist. Anschließend wird gezeigt, dass man sich ? wie bei Markov'schen Entscheidungsprozessen und skalarwertigen stochastischen Spielen - beim Suchen der D-Gleichgewichte auf stationäre Strategien beschränken kann. Das Hauptresultat dieses Kapitels ist die Verallgemeinerung einer schon bekannten Aussage für 2-Personen Markov-Spiele auf N-Personen Markov-Spiele: Ein D-Gleichgewicht im N-Personen Markov-Spiel ist ein Subgradient speziell konstruierter Trägerfunktionen des Gesamtertrags der Spieler. Um im einfachsten Fall der Markov-Spiele, den Zwei-Personen Nullsummenspielen, ein Lösungskonzept entwickeln zu können, wird im Kapitel 4 die Methode des Dynamischen Programmierens benutzt. Es wird der Denardo-Formalismus übernommen, um einen Operator H? im Raum aller p-dimensionalen vektorwertigen Funktionen zu entwickeln. Die Haputresultate dieses Kapitels sind zwei Sätze über optimale Lösungen, bzw. D-Gleichgewichte. Der erste Satz zeigt, dass für eine fixierte stationäre Strategie ?? der erwartete diskontierte Gesamtertrag f(??) der Fixpunkt des Operators H? ist. Anschließend zeigt der zweite Satz, dass diese Lösung genau der vektorwertigen Erweiterung des Resultats von Shapley entspricht. Anhand dieser Resultate werden nun zwei Algorithmen entwickelt: sukzessive Approximationen und Hoffman-Karp-Algorithmus. Es wird ein numerisches Beispiel für beide Algorithmen berechnet. Kapitel 4 schließt mit dem Abschnitt über weitere Resultate und Ansätze für weitere Forschung. Im Anhang werden die Hauptresultate der statischen Spieltheorie vorgestellt, viele von denen werden in der vorliegenden Arbeit benutzt.

Page generated in 0.083 seconds