• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • Tagged with
  • 9
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerische Lösung diskret-kontinuierlicher Vektoroptimierungsprobleme

Sturm, Regina. January 2001 (has links)
München, Univ. der Bundeswehr, Diss., 2001. / Computerdatei im Fernzugriff.
2

Numerische Lösung diskret-kontinuierlicher Vektoroptimierungsprobleme

Sturm, Regina. January 2001 (has links)
München, Univ. der Bundeswehr, Diss., 2001. / Computerdatei im Fernzugriff.
3

Derivierte Mengen in der multikriteriellen Optimierung

Sekatzek, Matthias. January 1999 (has links) (PDF)
Halle, Universiẗat, Diss., 1999.
4

Numerische Lösung diskret-kontinuierlicher Vektoroptimierungsprobleme

Sturm, Regina. January 2001 (has links) (PDF)
München, Universiẗat der Bundeswehr, Diss., 2001.
5

Design und Analyse integrierter Schaltungen mit evolutionären Algorithmen

Thomas, Marc. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2001--Dortmund.
6

Entwicklung realisierbarer hierarchischer Kompensatorstrukturen für lineare Mehrgrößensysteme mittels CAD /

Jäker, Karl-Peter. January 1991 (has links)
Gesamthochsch., Diss--Paderborn.
7

Vector-Valued Markov Games / Vektorwertige Markov-Spiele

Piskuric, Mojca 16 April 2001 (has links) (PDF)
The subject of the thesis are vector-valued Markov Games. Chapter 1 presents the idea, that has led to the development of the theory of general stochastic games. The work of Lloyd S. Shapley is outlined, and the most important authors and bibliography are stated. Also, the motivation behind the research of vector-valued game-theoretic problems is presented. Chapter 2 develops a rigorous mathematical model of vector-valued N-person Markov games. The corresponding definitions are stated, and the notations, as well as the notion of a strategy are explained in detail. On the basis of these definitions a probability measure is constructed, in an appropriate probability space, which controls the stochastic game process. Furthermore, as in all models of stochastic control, a payoff is specified, in our case the expected discounted payoff. The principles of vector optimization are stated in Chapter 3, and the concept of optimality with recpect to some convex cone is developed. This leads to the generalization of Nash-equilibria from scalar- to vector-valued games, the so-called D-equilibria. Examples are provided to show, that this definition really is a generalization of the existing definitions for scalar-valued games. For a given convex cone D, necessary and sufficient conditions are found to show, when a strategy is also a D-equilibrium. Furthermore it is shown that a D-equilibrium in stationary strategies exists, as one could expect from the known results from the theory of scalar-valued stochastic games. The main result of this chapter is a generalization of an existing result for 2-person vector-valued Markov games to N-person Markov Games, namely that a D-equilibrium of an N-person Markov game is a subgradient of specially constructed support functions of the original payoff functions. To be able to develop solution procedures in the simplest case, that is, the 2-person zero-sum case, Chapter 4 introduces the Denardo dynamic programming formalism. In the space of all p-dimensional functions we define a dynamic programming operator H? to describe the solutions of Markov games. The first of the two main results in this chapter is the following: the expected overall payoff to player 1, f(??), for a fixed stationary strategy ??, is the fixed point of the operator H?. The second theorem then shows, that the latter result is exactly the vector-valued generalization of the famous Shapley result. These theorems are fundamental for the subsequent development of two algorithms, the successive approximations and the Hoffman-Karp algorithm. A numerical example for both algorithms is presented. Chapter 4 finishes with a discussion on other significant results, and the outline of the further research. The Appendix finally presents the main results from general Game Theory, most of which were used for developing both theoretic and algorithmic parts of this thesis. / Das Thema der vorliegenden Arbeit sind vektorwertige Markov-Spiele. Im Kapitel 1 wird die Idee vorgestellt, die zur Entwicklung genereller stochastischer Spiele geführt hat. Die Arbeit von Lloyd S. Shapley wird kurz dargestellt, und die wichtigsten Autoren und Literaturquellen werden genannt. Es wird weiter die Motivation für das Studium der vektorwertigen Spiele erklärt. Kapitel 2 entwickelt ein allgemeines mathematisches Modell vektorwertiger N-Personen Markov-Spiele. Die entsprechenden Definitionen werden angegeben, und es wird auf die Bezeichnungen, sowie den Begriff einer Strategie eingegangen. Weiter wird im entsprechenden Wahrscheinlichkeitsraum ein Wahrscheinlichkeitsmaß konstruiert, das den zugrunde liegenden stochastischen Prozeß steuert. Wie bei allen Modellen gesteuerter stochastischen Prozesse wird eine Auszahlung spezifiziert, konkret der erwartete diskontierte Gesamtertrag. Im Kapitel 3 werden die Prinzipien der Vektoroptimierung erläutert. Es wird der Begriff der Optimalität bezüglich gegebener konvexer Kegel entwickelt. Dieser Begriff wird weiter benutzt, um die Definition der Nash-Gleichgewichte für skalarwertige Spiele auf unser vektorwertiges Modell, die sogenannten D-Gleichgewichte, zu erweitern. Anhand mehrerer Beispiele wird gezeigt, dass diese Definition eine Verallgemeinerung der existierenden Definitionen für skalarwertige Spiele ist. Weiter werden notwendige und hinreichende Bedingungen hinsichtlich des Optimierungskegels D angegeben, wann eine Strategie ein D-Gleichgewicht ist. Anschließend wird gezeigt, dass man sich ? wie bei Markov'schen Entscheidungsprozessen und skalarwertigen stochastischen Spielen - beim Suchen der D-Gleichgewichte auf stationäre Strategien beschränken kann. Das Hauptresultat dieses Kapitels ist die Verallgemeinerung einer schon bekannten Aussage für 2-Personen Markov-Spiele auf N-Personen Markov-Spiele: Ein D-Gleichgewicht im N-Personen Markov-Spiel ist ein Subgradient speziell konstruierter Trägerfunktionen des Gesamtertrags der Spieler. Um im einfachsten Fall der Markov-Spiele, den Zwei-Personen Nullsummenspielen, ein Lösungskonzept entwickeln zu können, wird im Kapitel 4 die Methode des Dynamischen Programmierens benutzt. Es wird der Denardo-Formalismus übernommen, um einen Operator H? im Raum aller p-dimensionalen vektorwertigen Funktionen zu entwickeln. Die Haputresultate dieses Kapitels sind zwei Sätze über optimale Lösungen, bzw. D-Gleichgewichte. Der erste Satz zeigt, dass für eine fixierte stationäre Strategie ?? der erwartete diskontierte Gesamtertrag f(??) der Fixpunkt des Operators H? ist. Anschließend zeigt der zweite Satz, dass diese Lösung genau der vektorwertigen Erweiterung des Resultats von Shapley entspricht. Anhand dieser Resultate werden nun zwei Algorithmen entwickelt: sukzessive Approximationen und Hoffman-Karp-Algorithmus. Es wird ein numerisches Beispiel für beide Algorithmen berechnet. Kapitel 4 schließt mit dem Abschnitt über weitere Resultate und Ansätze für weitere Forschung. Im Anhang werden die Hauptresultate der statischen Spieltheorie vorgestellt, viele von denen werden in der vorliegenden Arbeit benutzt.
8

Vector-Valued Markov Games

Piskuric, Mojca 23 April 2001 (has links)
The subject of the thesis are vector-valued Markov Games. Chapter 1 presents the idea, that has led to the development of the theory of general stochastic games. The work of Lloyd S. Shapley is outlined, and the most important authors and bibliography are stated. Also, the motivation behind the research of vector-valued game-theoretic problems is presented. Chapter 2 develops a rigorous mathematical model of vector-valued N-person Markov games. The corresponding definitions are stated, and the notations, as well as the notion of a strategy are explained in detail. On the basis of these definitions a probability measure is constructed, in an appropriate probability space, which controls the stochastic game process. Furthermore, as in all models of stochastic control, a payoff is specified, in our case the expected discounted payoff. The principles of vector optimization are stated in Chapter 3, and the concept of optimality with recpect to some convex cone is developed. This leads to the generalization of Nash-equilibria from scalar- to vector-valued games, the so-called D-equilibria. Examples are provided to show, that this definition really is a generalization of the existing definitions for scalar-valued games. For a given convex cone D, necessary and sufficient conditions are found to show, when a strategy is also a D-equilibrium. Furthermore it is shown that a D-equilibrium in stationary strategies exists, as one could expect from the known results from the theory of scalar-valued stochastic games. The main result of this chapter is a generalization of an existing result for 2-person vector-valued Markov games to N-person Markov Games, namely that a D-equilibrium of an N-person Markov game is a subgradient of specially constructed support functions of the original payoff functions. To be able to develop solution procedures in the simplest case, that is, the 2-person zero-sum case, Chapter 4 introduces the Denardo dynamic programming formalism. In the space of all p-dimensional functions we define a dynamic programming operator H? to describe the solutions of Markov games. The first of the two main results in this chapter is the following: the expected overall payoff to player 1, f(??), for a fixed stationary strategy ??, is the fixed point of the operator H?. The second theorem then shows, that the latter result is exactly the vector-valued generalization of the famous Shapley result. These theorems are fundamental for the subsequent development of two algorithms, the successive approximations and the Hoffman-Karp algorithm. A numerical example for both algorithms is presented. Chapter 4 finishes with a discussion on other significant results, and the outline of the further research. The Appendix finally presents the main results from general Game Theory, most of which were used for developing both theoretic and algorithmic parts of this thesis. / Das Thema der vorliegenden Arbeit sind vektorwertige Markov-Spiele. Im Kapitel 1 wird die Idee vorgestellt, die zur Entwicklung genereller stochastischer Spiele geführt hat. Die Arbeit von Lloyd S. Shapley wird kurz dargestellt, und die wichtigsten Autoren und Literaturquellen werden genannt. Es wird weiter die Motivation für das Studium der vektorwertigen Spiele erklärt. Kapitel 2 entwickelt ein allgemeines mathematisches Modell vektorwertiger N-Personen Markov-Spiele. Die entsprechenden Definitionen werden angegeben, und es wird auf die Bezeichnungen, sowie den Begriff einer Strategie eingegangen. Weiter wird im entsprechenden Wahrscheinlichkeitsraum ein Wahrscheinlichkeitsmaß konstruiert, das den zugrunde liegenden stochastischen Prozeß steuert. Wie bei allen Modellen gesteuerter stochastischen Prozesse wird eine Auszahlung spezifiziert, konkret der erwartete diskontierte Gesamtertrag. Im Kapitel 3 werden die Prinzipien der Vektoroptimierung erläutert. Es wird der Begriff der Optimalität bezüglich gegebener konvexer Kegel entwickelt. Dieser Begriff wird weiter benutzt, um die Definition der Nash-Gleichgewichte für skalarwertige Spiele auf unser vektorwertiges Modell, die sogenannten D-Gleichgewichte, zu erweitern. Anhand mehrerer Beispiele wird gezeigt, dass diese Definition eine Verallgemeinerung der existierenden Definitionen für skalarwertige Spiele ist. Weiter werden notwendige und hinreichende Bedingungen hinsichtlich des Optimierungskegels D angegeben, wann eine Strategie ein D-Gleichgewicht ist. Anschließend wird gezeigt, dass man sich ? wie bei Markov'schen Entscheidungsprozessen und skalarwertigen stochastischen Spielen - beim Suchen der D-Gleichgewichte auf stationäre Strategien beschränken kann. Das Hauptresultat dieses Kapitels ist die Verallgemeinerung einer schon bekannten Aussage für 2-Personen Markov-Spiele auf N-Personen Markov-Spiele: Ein D-Gleichgewicht im N-Personen Markov-Spiel ist ein Subgradient speziell konstruierter Trägerfunktionen des Gesamtertrags der Spieler. Um im einfachsten Fall der Markov-Spiele, den Zwei-Personen Nullsummenspielen, ein Lösungskonzept entwickeln zu können, wird im Kapitel 4 die Methode des Dynamischen Programmierens benutzt. Es wird der Denardo-Formalismus übernommen, um einen Operator H? im Raum aller p-dimensionalen vektorwertigen Funktionen zu entwickeln. Die Haputresultate dieses Kapitels sind zwei Sätze über optimale Lösungen, bzw. D-Gleichgewichte. Der erste Satz zeigt, dass für eine fixierte stationäre Strategie ?? der erwartete diskontierte Gesamtertrag f(??) der Fixpunkt des Operators H? ist. Anschließend zeigt der zweite Satz, dass diese Lösung genau der vektorwertigen Erweiterung des Resultats von Shapley entspricht. Anhand dieser Resultate werden nun zwei Algorithmen entwickelt: sukzessive Approximationen und Hoffman-Karp-Algorithmus. Es wird ein numerisches Beispiel für beide Algorithmen berechnet. Kapitel 4 schließt mit dem Abschnitt über weitere Resultate und Ansätze für weitere Forschung. Im Anhang werden die Hauptresultate der statischen Spieltheorie vorgestellt, viele von denen werden in der vorliegenden Arbeit benutzt.
9

Ein einparametrischer Zugang zur Lösung von Vektoroptimierungsproblemen in halbgeordneten endlichdimensionalen Räumen

Mbunga, Paulo 13 July 2007 (has links)
Im Mittelpunkt unserer Untersuchungen steht das mehrkriterielle Optimierungsproblem, in einer beliebigen nichtleeren Menge eines halbgeordneten endlich dimensionalen Raumes. Zu dessen Lösung betrachten wir ein Dialogverfahren, in dem der Entscheidungsträger in jedem Schritt seine Wünsche äußert. Bei der Bestimmung einer Lösung, die den Entscheidungsträger zufriedenstellt, müssen wir ein im Allgemeinen nichtkonvexes und nicht triviales skalares Optimierungsproblem lösen. Zur Lösung dieses Problems haben wir zwei Klassen einparametrischer Optimierungsprobleme (Einbettungen) konstruiert. Mit Hilfe der Projektion auf den konvexen Ordungskegel haben wir gezeigt, dass diese Einbettungen wohldefiniert sind. Im Gegensatz zu der in der Literatur untersuchten Standardeinbettung, sind die in dieser Arbeit betrachteten Einbettungen durch die Skalarisierungen der Vektoroptimierungsprobleme mittels streng monotoner skalarisierender Funktionen motiviert. Diese Untersuchung wird unter dem Gesichtspunkt der Theorie der einparametrischen Optimierungsprobleme für den Fall eines beliebigen spitzen polyedrischen Ordnungskegels durchgeführt. Sie umfasst z.B. Fragestellungen nach der Art der Singularitäten, die für die verschiedenen Einbettungen auftreten können, nach den Bedingungen, unter denen eine Zusammenhangskomponente in der Menge stationärer oder verallgemeinerter kritischer Punkte mit Hilfe von Kurvenverfolgungsmethoden numerisch beschrieben werden kann und nach den hinreichenden Bedingungen für die Existenz einer Lösungskurve. Anschließend haben wir das von Guddat und Jongen eingeführte Konzept der strukturellen Stabilität eines skalaren Optimierungsproblems in der Vektoroptimierung verallgemeinert und einen Zusammenhang zur strukturellen Stabilität eines Minimaxproblems erstellt. Dieses Minimaxproblem steht in starker Beziehung zur Skalarisierungsmethode der Vektoroptimierungsprobleme. / In this work we consider the multiobjective optimization in a subset of a partially orded finite dimensional space. In order to solve this problem we use a dialogue procedure in which the decision maker has to determine in each step the aspiration and reservation level expressing his wishes (goals). This leads to an optimization problem which is not easy to solve in the nonconvex case. We solve it proposing two classes of one-parametric optimization problems (embeddings). Using the projection in the ordering cone, we show that these embeddings are well defined, i.e. the corresponding constraint sets depending on real-valued parameters are not empty. Contrary to the very known standard embedding the proposed embeddings are motivated by the use of strongly monotonically increasing functions, which play an important role by the scalarization of multiobjective optimization problems. The two classes of embeddings are investigated from the point of view of parametric optimization considering a pointed polyhedral cone. This investigation includes the determination of the kind of singularities which can appear, the conditions under which a connected component in the set of stationary or generalized critical point can be numerically described using pathfollowing methods and a solution curve may exist. Finally, we extend the concept of structural stability by Guddat and Jongen to the multiobjective optimization problems and establish a connection to the problem of Minimax type, which is related to the scalarization of multiobjective optimization problems.

Page generated in 0.0688 seconds