• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 147
  • 103
  • 71
  • 30
  • 25
  • 13
  • 12
  • 12
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 471
  • 146
  • 92
  • 69
  • 64
  • 61
  • 58
  • 57
  • 55
  • 53
  • 47
  • 46
  • 42
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Embryonic Stem Cell Technologies for Understanding the Complexity of VEGF Function

George, Sophia 20 January 2009 (has links)
Newly established F1 hybrid Embryonic Stem cells allow the production of ES cell-derived animals at a high enough efficiency to directly make ES cell based genetics feasible. An F1 hybrid ES cell line, G4 was used to generate transgenic over-expressing cell lines. The consequence of the expression of a panel of transgenes was assessed directly from ES cell-derived embryos produced by the tetraploid complementation assay. The generation of ES cell-derived embryos/animals was very efficient. A sufficient number of mutants for initial phenotypic analyses was derived only a few weeks after the establishment of the cell lines. The genes used in the study had either angiogenic/vasculogenic, anti-angiogenic or unknown properties. Of these transgenic mouse lines VEGF-A and Flt-Fc were used to further elucidate the effects of altered VEGF signaling on cell fate decisions in embryonic development and ES differentiation in two experimental systems. A. Early but transient Flk-1 activation led to enhanced generation of blood progenitors, whereas continuous activation of Flk-1 abolished this effect and enhanced endothelial cell generation. Ex vivo analysis of cells derived from E7.5 embryos demonstrated that sFlt-1-mediated control of Flk-1 activity also impacted the fate of hematopoietic and endothelial cells. The Flt-1-Fc transgenic mouse model was used to alter Flk-1 activation in vivo and show the relevance of the in vitro observations. These results demonstrate that sFlt-1 regulates Flk-1 activation in an oxygen responsive manner. Inhibition of Flk-1 activation by sFlt-1 increases the specification of hemangioblasts to blood cells consistent with a VEGF-independent default mechanism. B. Ubiquitous over-expression of VEGF164 isoform led to E8.75 embryonic lethality. The primary cause of lethality was the failure to form an organized cardiovascular system, which was manifested in three ways: the absence of yolk sac blood vessels, the lack of embryonic-maternal circulation due to the failure of allantochorionic fusion and improper cardiac function. The described phenotypes suggest that VEGF does not inhibit embryonic or extra-embryonic mesoderm formation at gastrulation but perturbs the balance amongst the mesodermal components.
242

Rational Design and Development of Anti-Angiogenic Protein Agents

Yin, Lu 05 December 2011 (has links)
Inhibition of angiogenesis is an effective and low toxic therapeutic avenue for the treatment of cancer patients in addition to traditional interventions. Majority of current available angiogenesis inhibitors for cancer therapies are growth factor inhibitors and small molecule tyrosine kinase inhibitors. A number of endogenous proteins and/or proteolytic fragments of extracellular matrix proteins are shown to have the activity of inhibition of angiogenesis by directly targeting endothelial cells. Structural analyses have indicated that a common structure of anti-parallel β-sheet with a highly positively charged surface presents in many of those inhibitors. This common structural feature is critical for the maintenance of their anti-angiogenic function. With this structural information, we have designed and developed a new class of anti-angiogenic proteins by integrating the short anti-parallel β-sheet forming sequences of endogenous anti-angiogenic proteins into a stable host protein, the extracellular domain-1 of cluster of differentiation 2 molecule (CD2D1). 1D 1H NMR spectra analyses indicated that the designed anti-angiogenic protein (ref to as ProAgio) folded as a β-sheet structure similar to that of the parental protein, CD2D1. ProAgio inhibited the growth of human umbilical vein cells (HUVECs) without affecting the growth of epithelial cells, suggesting a specific effect to endothelial cells. ProAgio effectively reduced endothelial tubules formed by the co-culture of HUVECs and PC3 cells on matrix gel in vitro. The designed anti-angiogenic protein was further site-specifically PEGylated in order to improve PK/PD properties and reduce immunogenicity. Examinations with PC3 xenografts showed that both ProAgio and the PEGylated ProAgio dramatically inhibited tumor growth. Immunofluorescence staining analyses of the endothelial marker CD31 indicated dramatic decreases in tumor vessels in lengths and branching points. Histological and immunofluorescence staining analyses of tissue slices of major organs indicated that there were no pathological damages to the tissue structure or disruption of normal vessels associated with the treatment of our designed anti-angiogenic agent. Overall, our studies developed a novel anti-angiogenesis agent that may have great clinical potentials. Our concept of protein design can be extended to the development of other novel protein drugs.
243

Controlling the Emergence of Hematopoietic Progenitor Cells from Pluripotent Stem Cells

Purpura, Kelly Anne 05 December 2012 (has links)
Embryogenesis occurs within a complex and dynamic cellular environment that influences cell fate decisions. Pluripotent stem cells (PSCs) are a valuable tool for research into disease models as well as a resource for cell therapy due to their capacity to self-renew and differentiate into all cell types. Mimicking aspects of the embryonic microenvironment in vitro impacts the resultant functional cells. The aim of this work was to develop a controlled and scaleable process for the generation of hematopoietic progenitor cells (HPCs) from embryonic stem cells (ESCs). We demonstrated with bioreactor-grown embryoid bodies (EBs) that increased HPC generation can be elicited by decreasing the oxygen tension by a mechanism where vascular endothelial growth factor receptor 2 (VEGFR2) activation is controlled through competition with the ligand decoy VEGFR1. This is important as it demonstrates the inherent responsiveness of the developing hematopoietic system to external forces and influences. We also established a serum-free system that facilitates directed differentiation, determining 5 ng/ml bone morphogenetic protein-4 (BMP4) with 50 ng/ml thrombopoietin (TPO) could generate 292 ± 42 colony forming cells (CFC)/5 x 10^4 cells with early VEGF treatment (25 ng/ml, day 0-5). We also controlled aggregate size influencing relative endogenous and exogenous growth factor signaling and modulating mesodermal differentiation; CFC output was optimal when initialized with 100 cell aggregates. For the first time, we demonstrated efficacy of local growth factor delivery by producing HPCs with gelatin microparticles (MP). Overall, these design components generate HPCs in a controlled and reproducible manner using a serum-free bioprocess that couples size controlled aggregates containing gelatin MPs for localized growth factor release of BMP4 and TPO with hypoxia to induce endogenous VEGF production. These strategies provide a tunable platform for developing cell therapies and high density growth, within a bioreactor system, can be facilitated by hydrogel encapsulation of the aggregates.
244

Development of Novel Antiangiogenic Biologics

Michael, Iacovos 06 December 2012 (has links)
Current anti-VEGF biologics, such as bevacizumab and VEGF trap, have been successfully used as therapeutic agents for cancer and age-related macular degeneration (AMD). Since these strategies target VEGF systemically, their toxicity profile, including proteinuria and thromboembolic events, and need for frequent eye injections in AMD treatment, prevail. Therefore, the aim of this PhD thesis was to generate novel anti-VEGF biologics that inhibit VEGF activity specifically at the desired target site. Two classes of biologics were engineered that simultaneously bind VEGF and either: 1) the extracellular matrix (ECM) or 2) target-site specific antigens. The first subgroup, “sticky-traps”, is composed of VEGF trap linked to a sequence of hydrophobic amino acids, with affinity for heparin sulfate proteoglycans of the ECM. The second subgroup, “lassos”, is composed of a C-terminus positioned form of VEGF trap linked to single-chain variable domain antibodies specific for either HER2 (HER2/V lasso) or fibronectin extra domain B (EDB; EDB/V lasso), expressed on breast cancer cell surfaces or in the vascular bed of solid tumours, respectively. ii Using a novel transgenic method, piggyBac transposons, biologics were expressed in transgenic cancer cell lines in a doxycycline inducible manner. They were shown to inhibit VEGF activity and also retain the native function of their constituent domains. Specifically, the sticky-traps adhered to the ECM and the HER2/V lasso inhibited the proliferation of HER2 positive cancer cell lines. Sticky-traps as well as lassos were able to inhibit or delay tumour growth of A-673, Pc-3, SKOV-3 and HT-29 xenografts. In contrast to soluble VEGF trap, sticky-traps were retained at the tumour site and were undetectable in the circulation. Moreover, sticky-traps, in contrast to VEGF trap, did not delay wound healing and regression of trachea blood vessels. Furthermore, transgenic studies indicated that HER2/V lasso is more effective compared to anti-HER2 Ab and VEGF trap used alone or in combination. These novel classes of antiangiogenic molecules could be advantageous in a clinical setting. Using the principles established in my PhD thesis work, similar dual function biologics can be designed for inhibition of other molecules with disease relevance.
245

Embryonic Stem Cell Technologies for Understanding the Complexity of VEGF Function

George, Sophia 20 January 2009 (has links)
Newly established F1 hybrid Embryonic Stem cells allow the production of ES cell-derived animals at a high enough efficiency to directly make ES cell based genetics feasible. An F1 hybrid ES cell line, G4 was used to generate transgenic over-expressing cell lines. The consequence of the expression of a panel of transgenes was assessed directly from ES cell-derived embryos produced by the tetraploid complementation assay. The generation of ES cell-derived embryos/animals was very efficient. A sufficient number of mutants for initial phenotypic analyses was derived only a few weeks after the establishment of the cell lines. The genes used in the study had either angiogenic/vasculogenic, anti-angiogenic or unknown properties. Of these transgenic mouse lines VEGF-A and Flt-Fc were used to further elucidate the effects of altered VEGF signaling on cell fate decisions in embryonic development and ES differentiation in two experimental systems. A. Early but transient Flk-1 activation led to enhanced generation of blood progenitors, whereas continuous activation of Flk-1 abolished this effect and enhanced endothelial cell generation. Ex vivo analysis of cells derived from E7.5 embryos demonstrated that sFlt-1-mediated control of Flk-1 activity also impacted the fate of hematopoietic and endothelial cells. The Flt-1-Fc transgenic mouse model was used to alter Flk-1 activation in vivo and show the relevance of the in vitro observations. These results demonstrate that sFlt-1 regulates Flk-1 activation in an oxygen responsive manner. Inhibition of Flk-1 activation by sFlt-1 increases the specification of hemangioblasts to blood cells consistent with a VEGF-independent default mechanism. B. Ubiquitous over-expression of VEGF164 isoform led to E8.75 embryonic lethality. The primary cause of lethality was the failure to form an organized cardiovascular system, which was manifested in three ways: the absence of yolk sac blood vessels, the lack of embryonic-maternal circulation due to the failure of allantochorionic fusion and improper cardiac function. The described phenotypes suggest that VEGF does not inhibit embryonic or extra-embryonic mesoderm formation at gastrulation but perturbs the balance amongst the mesodermal components.
246

Controlling the Emergence of Hematopoietic Progenitor Cells from Pluripotent Stem Cells

Purpura, Kelly Anne 05 December 2012 (has links)
Embryogenesis occurs within a complex and dynamic cellular environment that influences cell fate decisions. Pluripotent stem cells (PSCs) are a valuable tool for research into disease models as well as a resource for cell therapy due to their capacity to self-renew and differentiate into all cell types. Mimicking aspects of the embryonic microenvironment in vitro impacts the resultant functional cells. The aim of this work was to develop a controlled and scaleable process for the generation of hematopoietic progenitor cells (HPCs) from embryonic stem cells (ESCs). We demonstrated with bioreactor-grown embryoid bodies (EBs) that increased HPC generation can be elicited by decreasing the oxygen tension by a mechanism where vascular endothelial growth factor receptor 2 (VEGFR2) activation is controlled through competition with the ligand decoy VEGFR1. This is important as it demonstrates the inherent responsiveness of the developing hematopoietic system to external forces and influences. We also established a serum-free system that facilitates directed differentiation, determining 5 ng/ml bone morphogenetic protein-4 (BMP4) with 50 ng/ml thrombopoietin (TPO) could generate 292 ± 42 colony forming cells (CFC)/5 x 10^4 cells with early VEGF treatment (25 ng/ml, day 0-5). We also controlled aggregate size influencing relative endogenous and exogenous growth factor signaling and modulating mesodermal differentiation; CFC output was optimal when initialized with 100 cell aggregates. For the first time, we demonstrated efficacy of local growth factor delivery by producing HPCs with gelatin microparticles (MP). Overall, these design components generate HPCs in a controlled and reproducible manner using a serum-free bioprocess that couples size controlled aggregates containing gelatin MPs for localized growth factor release of BMP4 and TPO with hypoxia to induce endogenous VEGF production. These strategies provide a tunable platform for developing cell therapies and high density growth, within a bioreactor system, can be facilitated by hydrogel encapsulation of the aggregates.
247

Development of Novel Antiangiogenic Biologics

Michael, Iacovos 06 December 2012 (has links)
Current anti-VEGF biologics, such as bevacizumab and VEGF trap, have been successfully used as therapeutic agents for cancer and age-related macular degeneration (AMD). Since these strategies target VEGF systemically, their toxicity profile, including proteinuria and thromboembolic events, and need for frequent eye injections in AMD treatment, prevail. Therefore, the aim of this PhD thesis was to generate novel anti-VEGF biologics that inhibit VEGF activity specifically at the desired target site. Two classes of biologics were engineered that simultaneously bind VEGF and either: 1) the extracellular matrix (ECM) or 2) target-site specific antigens. The first subgroup, “sticky-traps”, is composed of VEGF trap linked to a sequence of hydrophobic amino acids, with affinity for heparin sulfate proteoglycans of the ECM. The second subgroup, “lassos”, is composed of a C-terminus positioned form of VEGF trap linked to single-chain variable domain antibodies specific for either HER2 (HER2/V lasso) or fibronectin extra domain B (EDB; EDB/V lasso), expressed on breast cancer cell surfaces or in the vascular bed of solid tumours, respectively. ii Using a novel transgenic method, piggyBac transposons, biologics were expressed in transgenic cancer cell lines in a doxycycline inducible manner. They were shown to inhibit VEGF activity and also retain the native function of their constituent domains. Specifically, the sticky-traps adhered to the ECM and the HER2/V lasso inhibited the proliferation of HER2 positive cancer cell lines. Sticky-traps as well as lassos were able to inhibit or delay tumour growth of A-673, Pc-3, SKOV-3 and HT-29 xenografts. In contrast to soluble VEGF trap, sticky-traps were retained at the tumour site and were undetectable in the circulation. Moreover, sticky-traps, in contrast to VEGF trap, did not delay wound healing and regression of trachea blood vessels. Furthermore, transgenic studies indicated that HER2/V lasso is more effective compared to anti-HER2 Ab and VEGF trap used alone or in combination. These novel classes of antiangiogenic molecules could be advantageous in a clinical setting. Using the principles established in my PhD thesis work, similar dual function biologics can be designed for inhibition of other molecules with disease relevance.
248

Hypoxia, PDGF and VEGF in Vascular Development

Nilsson, Ingrid January 2006 (has links)
The mechanisms behind many important aspects of blood- and lymphatic vessel formation have yet not been elucidated in detail. The primary objectives of this thesis have therefore been to study the effects of hypoxia, platelet-derived growth factor (PDGF) and vascular endothelial growth factors (VEGFs) on vascular development and function. In conditions of low oxygen pressure, hypoxia, the survival of the organism is critically dependent on the ability to compensate for the reduced oxygen levels by promoting blood vessel growth and oxygen-independent energy production. Many direct effects of hypoxia in cells are attributed to the induction of a family of hypoxia-inducible transcription factors (HIFs) which control the expression of specific target genes. We found that capillary endothelial cells (ECs) respond to hypoxia with upregulation of genes involved in growth and remodeling of blood vessels. On the other hand, vein ECs responded to hypoxia with increased expression of genes involved in lymphatic vessel growth. Using differentiating embryonic stem (ES) cells, we have shown that hypoxia upregulates expression of VEGF receptor-3 (VEGFR-3) on blood vascular ECs. Furthermore, we have provided evidence for a critical role of VEGFR-3 in hypoxia-induced blood vessel development. Activation of PDGF receptor-β (PDGFR-β) on early vascular progenitors in differentiating ES cells or in mice induces blood vessel differentiation, while negatively influencing early hematopoiesis. PDGFR-β expression on vascular progenitors may therefore play a role in guiding differentiation of the vascular lineages. We have investigated the usefulness of differentiating ES cells as a model to study early lymphatic development. Administration of VEGF-C and VEGF-A induced formation of lymphatic vessel-like structures that seemed connected to the blood vasculature, supporting the general view that lymphatic ECs are derived from blood vascular ECs. In summary, this thesis has provided new insights in the contribution of different growth factors in hematopoietic, blood- and lymphendothelial development.
249

Leukocytes in Angiogenesis : Learning from Transplanted Pancreatic Islets

Christoffersson, Gustaf January 2013 (has links)
Angiogenesis, the growth of new blood vessels, is a complex process involving several cell types and molecular signals. Excessive vascular growth is a problem in tumors, and insufficient vascularization hampers the function of transplanted insulin-producing pancreatic islets. Understanding the mechanisms behind blood vessel growth generates increased means to control angiogenesis. In this thesis a model of pancreatic islet transplantation to muscle has been used to study the involvement of leukocytes in the development of new vasculature. Transplantation of isolated islets of Langerhans into mouse muscle promoted revascularization of the grafts to a level comparable to native islets in the pancreas. The complete and functional vascular restoration resulted in improved blood glucose control compared to the clinical standard implantation site, the liver. This proved muscle as a transplantation site to be a clinically relevant option for the treatment of type 1 diabetes. The rapid islet revascularization process was found to be dependent on a distinct subset of neutrophils characterized by high expression of the chemokine receptor CXCR4 and the enzyme matrix metalloproteinase 9 (MMP-9). These cells were recruited to recently transplanted and hypoxic grafts by islet-secreted vascular endothelial growth factor A (VEGF-A). Leukocyte migration and interactions in the engraftment area were monitored using a high-speed confocal microscope followed by software tracking. New software was developed to visualize migration statistics. This tool revealed areas around the islet graft where neutrophil gathering coincided with sites of angiogenesis. Macrophages in the engraftment area positioned themselves close to the newly formed vasculature and were shown to have a stabilizing effect on the vessels. When macrophages were removed, no pericytes were recruited to the forming vasculature. The perivascular macrophages also began to express a pericyte marker when in the graft, suggesting a close relationship between these cell types or macrophage plasticity. In conclusion, this thesis presents muscle as a proangiogenic transplantation site for pancreatic islets for the treatment of type 1 diabetes, where the revascularization of the grafts was dependent on the recruitment and actions of specialized immune cells.
250

Impact of Oxygen-Release Material on Human Urine-Derived Stem Cells’ Differentiation and Proliferation in Hypoxic Condition In Vitro

Krieg, Marie-Louise January 2010 (has links)
One of today’s most widely spread health problems is urinary incontinence, affecting 60-80% of the US population from age 15 and up. Treatment based on the possibility to implant a scaffold seeded with the patients’ own urine-derived stem cells, hUSC, to regenerate the damaged muscle tissue, would prove effective. A main challenge in regenerating new tissue from cell-seeded scaffolds is the limited cell survival due to insufficient oxygen diffusion to the center of the scaffold. Ways of enhancing cell survival, and thereby, proliferation and differentiation, is by hypoxic preconditioning of the cells or implantation in an oxygen-release material. Hypoxic preconditioning has shown to enhance proliferation as well as the expression of vascular endothelial growth factor, VEGF, in for example human bone marrow derived stem cells, hBMSC. VEGF is involved in the establishment of vasculature structures and an upregulation of its expression may therefore help promote quicker angeogenisis, increasing the oxygen supply and the cell survival. Oxygen-release materials have shown to enhance cell survival and growth both in vitro and in vivo. This study aims to investigate the effect of hypoxia on hUSC, during 9 days of hypoxic culturing (2.0% ± 0.1% O2) with and without oxygen-release material (PLGA 75:25 with 5 w% CPO) in vitro. hBMSC, and human smooth muscle cells, hSMC, have been used as control groups. Cell proliferation, morphology, differentiation, production of VEGF, and expression of hypoxia inducible factor HIF-1α have been studied. According to the results, combining hypoxic preconditioning of hUSC with implantation in oxygen-release material could be an effective way to regenerate muscular tissue. Hypoxic preconditioning enhanced cell proliferation, production of VEGF, and HIF-1α expression. The increase of VEGF and HIF-1α would promote vascularization when implanted. The oxygen-release material showed possible promotion of cell differentiation, which would augment the hUSCs’ myogenic differentiation, while supplying oxygen until the tissue’s vascular structure has been established.

Page generated in 0.0544 seconds