• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 2
  • Tagged with
  • 23
  • 23
  • 18
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Neuroprotective Role of Ubiquitin Carboxyl-Terminal Hydrolase L1 and Heat Shock Protein 70 at the Rostral Ventrolateral Medulla During Mevinphos Intoxication in the Rat

Chang, Chi 23 May 2005 (has links)
In eukaryotic cells, most proteins in the cytosol and nucleus are degraded via the ubiquitin-proteasome pathway. Ubiquitin is best known for its role in targeting proteins for degradation by the proteasome. Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) is found specifically in central and peripheral neurons, and is responsible for the removal of small peptide fragments from the ubiquitin chain and for co-translational processing of ubiquitin gene products to generate free monomeric ubiquitin. In response to extreme conditions, cells exhibit an up-regulation of heat shock protein (HSP) expression, which contributes to repair and protective mechanisms. Within the HSP family, HSP70 is the major inducible member that protects against cell death. Based on the pharmacologic property of organophosphates as an inhibitor of cholinesterase, it is generally contended that manifestations of organophosphate poisoning, including secretion and muscle fasciculation, stupor, cardiopulmonary collapse, respiratory failure, coma or death, result from accumulation of, and over-stimulation by acetylcholine at peripheral of central synapses. One approach in furthering our understanding on organophosphate poisoning is delineation of its potential protective mechanisms. In this regard, the information on the cellular and molecular mechanisms that underlie organophosphate poisoning has received attention. Our laboratory demonstrated previously that a crucial brain site via which mevinphos (Mev), an organophosphate insecticide of the P=O type, acts is the rostral ventrolateral medulla (RVLM), the medullary origin of premotor sympathetic neurons that are responsible for the maintenance of vasomotor tone. The phasic changes in cardiovascular events over the course of acute Mev intoxication also parallel fluctuations of the ¡§life-and-death¡¨ signals that emanate form the RVLM. Based on a rat model of organophosphate poisoning that provides continuous information on cellular and molecular mechanisms in the RVLM, the present study was undertaken to evaluate whether changes in protein level of UCH-L1 or HSP70 are associated with death arising from Mev intoxication. We also evaluated the efficacy of both of them in the neuroprotection against fatality during Mev intoxication. The first part of this study investigated whether UCH-L1 plays a neuroprotective role at the RVLM, where Mev acts to elicit cardiovascular toxicity. In Sprague-Dawley rats maintained under propofol anesthesia, Mev (960 µg/kg, i.v.) induced a parallel and progressive augmentation in UCH-L1 or ubiquitin expression at the ventrolateral medulla during the course of Mev intoxication. The increase in UCH-L1 level was significantly blunted on pretreatment with microinjection bilaterally into the RVLM of a transcription inhibitor, actinomycin D (5 nmol) or a translation inhibitor, cycloheximide (20 nmol). Compared to artificial cerebrospinal fluid (aCSF) or sense uch-L1 oligonucleotide (100 pmol) pretreatment, microinjection of an antisense uch-L1 oligonucleotide (100 pmol) bilaterally into the RVLM significantly increased mortality, reduced the duration of the phase I (¡§pro- life¡¨ phase), blunted the increase in ubiquitin expression in ventrolateral medulla, and augmented the induced hypotension in rats that received Mev. The second part of this study investigated whether HSP70 plays a neuroprotective role at the RVLM. Intravenous administration of Mev (960
12

Distribution of Nitric Oxide Synthase Isoforms in Neurons and Glial Cells Under Physiological or Pathological Conditions in the Rostral Ventrolateral Medulla of the Rat

Tsai, Po-chuan 15 August 2005 (has links)
The rostral ventrolateral medulla (RVLM) regulates vasomotor activity via sympathoexcitation and sympathoinhibition to maintain blood pressure. Nitric oxide synthesized by nitric oxide synthase (NOS) I and NOS II within RVLM is responsible for sympathoexcitation and sympathoinhibition respectively. In our previously study, under physiological condition RVLM neurons contain both NOS I and NOS II protein, and NOS III protein is expressed mainly on blood vessels. Under Mevinphos (Mev) intoxication, our previously study demonstrates that the expression of RVLM NOS I and II mRNA or protein are both increased under Mev intoxication phase I, and NOSII mRNA or protein are further increased under Mev intoxication phase II. On the other hand, in rat central nervous system, about 65% of total cells are glial cells, including astrocytes, microglia and oligodendrocytes. However, the expressions of NOS isoforms in RVLM glial cells still need to be determined. We used double immunofluorescence staining and confocal microscopy to investigate the distributions of NOS isoforms protein in RVLM neurons and glial cells under physiological condition and under pathological condition using Mev intoxication as our model. We further compared the distributions of NOS isoforms in RVLM neurons and glial cells under physiological or pathological conditions. The confocal images indicate that NOS I protein reactivity co-localized with neurons and microglia in the RVLM. NOS II protein reactivity co-localized with neurons, astrocytes and microglia. NOS III protein reactivity co-localized with blood vessels and microglia. The distributions of NOS isoforms protein reactivity in RVLM neurons and glial cells under Mev intoxication are the same as under physiological condition. Furthermore, the expressions of NOS I protein within neurons or microglia and NOS II in neurons, astrocytes or microglia are progressively increased under Mev intoxication. On the other hand, the expression of NOS III within microglia under Mev intoxication was similar to physiological condition. The population of NOS I-positive neurons or microglia, and NOS II-positive neurons, astrocytes or microglia increased under Mev intoxication. However the population of NOS III-positive microglia decreased under Mev intoxication. These results indicate that within RVLM, the distributions of NOS I are in neurons and microglia; NOS II are in neurons, astrocytes and microglia; NOS III are in blood vessels and microglia. We suggest that under Mev intoxication, the source of up-regulated NOS I protein includes neurons and microglia; and the up-regulated NOS II protein comes from neurons, astrocytes and microglia.
13

Dysfunction of Mitochondrial Respiratory Chain in Rostral Ventrolateral Medulla During Experimental Endotoxemia

Chuang, Yao-Chung 08 January 2003 (has links)
Dysfunction of Mitochondrial Respiratory Chain in Rostral Ventrolateral Medulla During Experimental Endotoxemia Sepsis is a complex pathophysiologic state resulting from an exaggerated whole-body inflammatory response to infection or injury. Metabolic disturbances, abnormal regulation of blood flow and diminished utilization of oxygen at the cellular level may account for tissue damage and lead to multiple organ failure and death. As the primary site of cellular energy generation is the mitochondrion, it presents itself as an important target for the septic cascade. In this regard, the notion that bioenergetic failure due to mitochondrial dysfunction contributes to organ failure during sepsis has received attention. We established the low frequency fluctuations in the systemic arterial pressure signals are related to the sympathetic neurogenic vasomotor tone, and reflect the functional integrity of the brain stem. Their origin is subsequently traced to the premotor sympathetic neurons at the rostral ventrolateral medulla (RVLM), whose neuronal activity is intimately related to the ¡§life-and-death¡¨ process. Based on a rat model of experimental endotoxemia that provides continuous information on changes in neuronal activity in the RVLM, the present study was undertaken to evaluate whether changes in mitochondrial respiratory functions are associated with death arising from sepsis. We also evaluated the efficacy of a new water-soluble coenzyme Q10 (CoQ10, ubiquinone) formula in the protection against fatality during endotoxemia by microinjection into bilateral RVLM. Dysfunction of Mitochondrial Respiratory Chain in Rostral Ventrolateral Medulla During Experimental Endotoxemia in the Rat We investigated the functional changes in mitochondrial respiratory chain at the RVLM in an experimental model of endotoxemia that mimics systemic inflammatory response syndrome. Experiments were carried out in adult male Sprague-Dawley rats that were maintained under propofol anesthesia. Intravenous administration of E. coli lipopolysaccharide (LPS; 30 mg/kg) induced progressive hypotension, with death ensued within 4 hours. The sequence of cardiovascular events during this LPS-induced endotoxemia can be divided into a reduction (Phase I), followed by an augmentation (Phase II; ¡§pro-life¡¨ phase) and a secondary decrease (Phase III; ¡§pro-death¡¨ phase) in the power density of the vasomotor components (0-0.8 Hz) of systemic arterial pressure (SAP) signals. Enzyme assay revealed significant decrease of the activity of NADH cytochrome c reductase (Complex I+III) and cytochrome c oxidase (Complex IV) in the RVLM during all 3 phases of endotoxemia. On the other hand, the activity of succinate cytochrome c reductase (Complex II+III) remained unaltered. Neuroprotective Effects of Coenzyme Q10 at Rostral ventrolateral Medulla Against Fatality During Experimental Endotoxemia in the Rat CoQ10 is a highly mobile electron carrier in the mitochondrial respiratory chain that also acts as an antioxidant. We evaluated the neuroprotective efficacy of CoQ10 against fatality in an experimental model of endotoxemia, using a novel water-soluble formulation of this quinone derivative. In Sprague-Dawley rats maintained under propofol anesthesia, intravenous administration of E. coli LPS (30 mg/kg) induced experimental endotoxemia. Pretreatment by microinjection bilaterally of CoQ10 (1 or 2 mg) into RVLM significantly diminished mortality, prolonged survival time, and reduced the slope or magnitude of the LPS-induced hypotension. CoQ10 pretreatment also significantly prolonged the duration of Phase II endotoxemia and augmented the total power density of the vasomotor components of SAP signals in Phase II endotoxemia. The increase in superoxide anion production induced by LPS at the RVLM during Phases II and III endotoxemia was also significantly blunted. Conclusion The present study revealed that selective dysfunction of respiratory enzyme Complexes I and IV in the mitochondrial respiratory chain at the RVLM is closely associated with fatal endotoxemia. CoQ10 provides neuroprotection against fatality during endotoxemia by acting on the RVLM. We further found that a reduction in superoxide anion produced during endotoxemia at the RVLM may be one of the mechanisms that underlie the elicited neuroprotection of CoQ10. These findings therefore open a new direction for future development of therapeutic strategy in this critical, complicated and highly fatal condition known as sepsis.
14

The Role of Heat Shock Proteins at the Rostral Ventrolateral Medulla in Experimental Endotoxemia in the Rat

Li, Chia-Hsin 30 July 2003 (has links)
Heat shock proteins (HSPs) are abundantly produced in cells that are under stress or injury by acting as a chaperone or promoting folding, unfolding, packing, degradation or denaturing of proteins or peptides. This study evaluated the role of HSP60, HSP70 or HSP90 in the rostral ventrolateral medulla (RVLM), in experimental endotoxemia in the rat. Adult, male Sprague-Dawley rats maintained by i.v. infusion propofol (25 mg/kg/h) were used. During experimental endotoxemia induced by intravenous administration of E. coli lipopolysaccharide (LPS, 30 mg/kg; serotype 0111:B4), the power density of the vasomotor component of systemic arterial pressure (SAP) spectrum underwent a decrease (Phase I), followed by an increase (Phase II; ¡§pro-life¡¨) and a secondary decrease (Phase III; ¡§pro-death¡¨). Western blot analysis revealed that HSP60 expression in the RVLM was significantly increased during Phase II and Phase III endotoxemia; and HSP70 expression was maximally increased during Phase II. HSP90 protein expression in the RVLM was not significantly changed during endotoxemia. We further studied the role of HSP60, HSP70 or HSP90 at the RVLM in experimental endotoxemia by pretreating animals with bilaterally microinjection of an anti-HSP serum (HSPAb, 1:20), normal mouse serum, antisense oligodeoxynucleotide (hsp AODN, 50 pmol), sense oligodeoxynucleotide (hsp SODN) or scrambled AODN (hsp SC). Pretreatment with HSP60Ab or hsp60 AODN resulted in significantly higher mortality, shorter survival time and shorter Phase II duration. In addition, the augmented power density of the vasomotor component of SAP signals during Phase II endotoxemia was significantly reduced. Even more detrimental effects were obtained on local application of HSP70Ab or hsp70 AODN into the RVLM. Pretreatment with HSP90Ab or hsp90 AODN was ineffective. We conclude that the expression of HSP60 and HSP70 in the RVLM may play a ¡§pro-life¡¨ role in fatal experimental endotoxemia; and HSP90 may not be involved.
15

NEURAL MECHANISMS OF SYMPATHETIC ACTIVATION DURING HYPERINSULINEMIA AND OBESITY-INDUCED HYPERTENSION

Bardgett, Megan Elyse 01 January 2010 (has links)
Obesity afflicts more than 30% of the U.S. population and is a major risk factor for the development of hypertension, type II diabetes, and cardiovascular disease. Studies in humans and animals indicate that obesity is associated with increased sympathetic outflow to the vasculature and kidneys. One mechanism postulated to underlie the increase in sympathetic nerve activity (SNA) in obesity is hyperinsulinemia. Little is known regarding the central circuitry underlying elevated SNA and arterial blood pressure (ABP) during hyperinsulinemia and obesity or if sympathoexcitatory circuits are still responsive to insulin in obesity. Hyperinsulinemic-euglycemic clamps elevate SNA to the hind limb vasculature in lean rodents but obesity is associated with resistance to the peripheral and anorexic effects of insulin. Therefore, the first aim was to determine whether diet-induced obesity causes development of insulin resistance in the central circuits mediating SNA. The sympathoexcitatory response to insulin was still intact in diet-induced obese rats indicating a role for insulin in the elevation in SNA and ABP in obesity. The second aim of this project was to identify the specific receptors in the rostral ventrolateral medulla (RVLM) that mediate the elevated SNA during hyperinsulinemia. The RVLM provides basal sympathetic tone and maintains baseline ABP. Glutamate is the major excitatory neurotransmitter and glutamate receptors of the RVLM are known to mediate multiple forms of hypertension. Blockade of RVLM NMDA-specific glutamatergic receptors reverses the increased lumbar SNA associated with hyperinsulinemia. In contrast, blockade of angiotensin II type 1 or melanocortin receptors in the RVLM had no effect on the sympathoexcitatory response to insulin. The goal of the third aim was to identify the cellular mechanisms within RVLM that mediate the elevated SNA and ABP in diet-induced obesity. Blockade of RVLM glutamate receptors reversed the elevated ABP and lumbar SNA associated with diet-induced obesity while it had no effect on rats on a low fat diet or those resistant to weight gain on the high fat diet. Similar to the findings during hyperinsulinemia, blockade of RVLM angiotensin II type 1 or melanocortin receptors had no effect on lumbar SNA or ABP during diet-induced obesity.
16

Studies on Cholinergic and Enkephalinergic Systems in Brainstem Cardiorespiratory Control

Kumar, Natasha N January 2007 (has links)
Doctor of Philosophy(PhD) / This thesis addresses the neurochemistry and function of specific nuclei in the autonomic nervous system that are crucial mediators of cardiorespiratory regulation. The primary aim is to build on previous knowledge about muscarinic cholinergic mechanisms within cardiorespiratory nuclei located in the ventrolateral medulla oblongata. The general focus is characterisation of gene expression patterns of specific muscarinic receptor subtypes in central nuclei involved in blood pressure control and respiratory control in normal rats. The findings were subsequently extended by characterisation of muscarinic receptor gene expression patterns in 1) a rat model of abnormal blood pressure control (hypertension) (Chapter 3) 2) a rat model of cholinergic sensitivity (Chapter 5) 3) the rat ventral respiratory group (Chapter 6) The results of a series of related investigations that ensued from the initial aims more finely characterise the neurocircuitry of the ventrolateral medulla, from a specifically cholinoceptive approach. All five muscarinic receptor subtypes are globally expressed in the ventrolateral medulla but only the M2R mRNA was significantly elevated in the VLM of hypertensive animals compared to their normotensive controls and in the VLM of animals displaying cholinergic hypersensitivity compared to their resistant controls. Surprisingly, M2R mRNA is absent in catecholaminergic cell groups but abundant in certain respiratory nuclei. Two smaller projects involving gene expression of other neurotransmitter / neuromodulators expressed in cardiorespiratory nuclei were also completed during my candidature. Firstly, the neurochemical characterisation of enkephalinergic neurons in the RVLM, and their relationship with bulbospinal, catecholaminergic neurons in hypertensive compared to normotensive animals was carried out (Chapter 4). A substantial proportion of sympathoexcitatory neurons located in the RVLM were enkephalinergic in nature. However, there was no significant difference in preproenkephalin expression in the RVLM in hypertensive compared to normotensive animals. Secondly, the identification and distribution of components of the renin-angiotensin aldosterone system (RAAS) within the brainstem, and differences in gene expression levels between hypertensive and normotensive animals was also investigated. The RAAS data was not included in this thesis, since the topic digresses substantially from other chapters and since it is published (Kumar et al., 2006). The mRNA expression aldosterone synthase, mineralocorticoid receptor (MR1), 12-lipoxygenase (12-LO), serum- and glucocorticoid- inducible kinase and K-ras) were found to be present at all rostrocaudal levels of the ventrolateral medulla. Expression of MR1 mRNA was lower in the RVLM of SHR compared with WKY rats and 12-LO mRNA levels were lower in the CVLM in SHR compared with WKY rats. Otherwise, there was no difference in gene expression level, or the method of detection was not sensitive enough to detect differences in low copy transcripts between hypertensive and normotensive animals.
17

Cocaine- and Amphetamine-Regulated Transcript Peptide-Immunoreactivity in Adrenergic C1 Neurons Projecting to the Intermediolateral Cell Column of the Rat

Dun, Siok L., Ng, Yee Kong, Brailoiu, G. Cristina, Ling, Eng Ang, Dun, Nae J. 28 February 2002 (has links)
Cocaine- and amphetamine-regulated transcript (CART) peptide-immunoreactivity was detected in neurons of the rostral ventrolateral medulla (RVLM), but few in the caudal ventrolateral medulla (CVLM). Double-labeling the medullary sections with sheep polyclonal phenylethanolamine N-methyltransferase-antiserum (PNMT) or monoclonal tyrosine hydroxylase-antibody and rabbit polyclonal CART peptide-antiserum revealed that nearly all adrenergic cells in the C1 area were CART peptide-positive and vice versa; tyrosine hydroxylase-positive cells in the A1 area were not. In the thoracolumbar spinal cord, neurons in the intermediolateral cell column (IML) and other sympathetic autonomic nuclei were CART peptide-positive; some of these were contacted by immunoreactive fibers arising from the lateral funiculus. By immuno-electron microscopy, axon terminals containing closely packed agranular CART peptide-immunoreactive vesicles appeared to make synaptic contacts with immunoreactive dendrites and soma in the IML, albeit the incidence of such contacts was low. Microinjection of the retrograde tracer Fluorogold into the lateral horn area of the T1-T3 spinal segments labeled a population of neurons in the C1 area, many of which were also CART peptide-positive. The results indicate that CART peptide-immunoreactivity is expressed in C1 adrenergic neurons, some of which project to the thoracolumbar spinal cord. The presence of this novel peptide in C1 adrenergic neurons underscores the multiplicity of putative transmitters that may be involved in signaling between putative cardiovascular neurons in the medulla oblongata and sympathetic preganglionic neurons (SPNs) in the spinal cord.
18

Orexins/Hypocretins Excite Rat Sympathetic Preganglionic Neurons in Vivo and in Vitro

Antunes, Vagner R., Cristina Brailoiu, G., Kwok, Ernest H., Scruggs, Phouangmala, Dun, And Nae 01 January 2001 (has links)
The two recently isolated hypothalamic peptides orexin A and orexin B, also known as hypocretin 1 and 2, are reported to be important signaling molecules in feeding and sleep/wakefulness. Orexin-containing neurons in the lateral hypothalamus project to numerous areas of the rat brain and spinal cord including the intermediolateral cell column (IML) of the thoracolumbar spinal cord. An in vivo and in vitro study was undertaken to evaluate the hypothesis that orexins, acting on sympathetic preganglionic neurons (SPNs) in the rat spinal cord, increase sympathetic outflow. First, orexin A (0.3, 1, and 10 nmol) by intrathecal injection increased mean arterial pressure (MAP) and heart rate (HR) by an average of 5, 18, and 30 mmHg and 10, 42, and 85 beats/min in urethane-anesthetized rats. Intrathecal injection of saline had no significant effects. Orexin B (3 nmol) by intrathecal administration increased MAP and HR by an average of 11 mmHg and 40 beats/min. The pressor effects of orexin A were attenuated by prior intrathecal. injection of orexin A antibodies (1:500 dilution) but not by normal serum albumin. Intravenous administration of the α1-adrenergic receptor antagonist prazosin (0.5 mg/kg) or the β-adrenergic receptor antagonist propranolol (0.5 mg/kg) markedly diminished, respectively, the orexin A-induced increase of MAP and HR. Second, whole cell patch recordings were made from antidromically identified SPNs of spinal cord slices from 12- to 16-day-old rats. Superfusion of orexin A or orexin B (100 or 300 nM) excited 12 of 17 SPNs, as evidenced by a membrane depolarization and/or increase of neuronal discharges. Orexin A- or B-induced depolarizations persisted in TTX (0.5 μM)-containing Krebs solution, indicating that the peptide acted directly on SPNs. Results from our in vivo and in vitro studies together with the previous observation of the presence of orexin A-immunoreactive fibers in the IML suggest that orexins, when released within the IML, augment sympathetic outflow by acting directly on SPNs.
19

Changes in Blood Pressure During Isometric Contractions to Fatigue in the Cat After Brain Stem Lesions: Effects of Clonidine

Williams, Carole A., Roberts, Jon R., Freels, Douglas B. 01 January 1990 (has links)
Study objective - The aim was to determine whether areas in the periaqueductal grey matter, medial dorsal raphé, or ventrolateral medulla might be involved with the integration of blood pressure and heart rate during isometric exercise.Design - Cats were anaesthetised with α chloralose (75 mg·kg-1) and catheters inserted into the right jugular vein and carotid artery. Isometric contractions were generated using a microprocessor controlled stimulator and sleeve electrode around the tibial nerve. Bilateral lesions were made in the dorsal periaqueductal grey matter (P1.0, LR 2.0, HD + 1.5 mm) or two sites in the ventrolateral medulla (P12.0, RL 2.0, HD -10 mm; or P12.0, RL 2.0, HD -8.5 mm). Lesions were also made in the medial dorsal raphé nuclei (P1.0, RL 0.0, HD +1.5 mm). Clonidine was injected into the cerebral aqueduct to determine whether it would exert an antipressor effect during muscle contraction after the lesions were made. Only one site of lesion was made in a group of animals. Bilateral injections of clonidine (250 ng in 0.5 μl) were made into the intact ventrolateral medulla (P11.5, RL 4.0, HD -8.5 mm) to explore its role further. Fatiguing contractions were performed before and after the lesions were made, or clonidine was injected, and changes in arterial blood pressure and heart rate were measured. Verification of the lesion sites or the microinjection sites, and the extent of the lesion or spread of the clonidine, was made from histological examination of brain tissue after each experiment.Experimental material - Adult cats of either sex, n = 20, weight 2.4 (SD 0.4) kg, were used.Measurements and main results - Fatiguing isometric contractions in control conditions caused mean arterial pressure to increase by 45-50 mm Hg and heart rates by 20-25 beats·min-1. Bilateral lesions in the dorsal periaqueductal grey matter did not alter resting mean arterial pressure but attenuated the pressor response during contractions. Injections of clonidine into the cerebral aqueduct had no further antipressor effects after the lesions. Lesions of the medial dorsal raphé nuclei or injections of clonidine into the intact medial dorsal raphé nuclei did not affect the pressor response to fatiguing isometric contractions. Injections of clonidine into the intact ventrolateral medulla eliminated the pressor response to isometric contractions. Bilateral lesions of the ventrolateral medulla near the rostral lateral border of the inferior olivary tract nuclei (P12.0, LR 2.0, HD -10 mm) also attenuated the muscle pressor response, while subsequent injections of clonidine into the cerebral aqueduct depressed the changes in blood pressure further.Conclusions - Ergoreceptor information may be processed through the periaqueductal grey matter through the ventrolateral medulla to control arterial blood pressure during isometric exercise to fatigue.
20

Differential roles of Trk or Src tyrosine kinase in the rostral ventrolateral medulla during mevinphos intoxication in the rat

Sun, Ya-hui 27 July 2006 (has links)
Mevinphos (Mev) is an organophosphate insecticide that acts on the rostral ventrolateral medulla (RVLM), the origin of sympathetic vasomotor tone, to induce cardiovascular responses. This study investigated the role of Trk (tropomyosin-related kinase) (receptor form) or Src (non-receptor form) tyrosine kinase at the RVLM in Mev-induced cardiovascular responses. Bilateral microinjection of Mev (10 nmol) into the RVLM elicited two distinct phases of cardiovascular responses, designated Phase I (sympathoexcitatory) and Phase II (sympathoinhibitory) Mev intoxication. Western blot assay showed that whereas p-Trk490 was increased during Phase I, p-Src416 was increased only during Phase II Mev intoxication. Interestingly, application of a Trk specific inhibitor (K252a; 1 pmol) or Src specific inhibitor (SU6656; 100 pmol) into the bilateral RVLM blunted the Mev-elicited sympathoexcitatory or sympathoinhibitory effect, respectively. Besides, K252a was limited to block NOS I protein expression in the RVLM during Mev intoxication, SU6656 only inhibited NOS II protein expression in the RVLM during Mev intoxication. We conclude that Trk tyrosine kinase (p-Trk490) in the RVLM participates in the Phase I cardiovascular responses during Mev intoxication, Src tyrosine kinase (p-Src416) in the RVLM participates in the Phase II cardiovascular responses associated with Mev intoxication.

Page generated in 0.0704 seconds