• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

mFUND-Projekte im Porträt - 7 Fragen an SCHOOL

Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste 31 January 2022 (has links)
Ein Gespräch mit Prof. Dr. Jörg Pfister, Professor an der Technischen Hochschule Mittelhessen, Fachbereich Mathematik, Naturwissenschaften und Datenverarbeitung sowie Leiter des mFUND-Projekts Strategiewechsel durch Open Data orientierte Lösungen (SCHOOL).
2

Luftschadstoffdaten für eine intelligente und umweltsensitive Verkehrslenkung: Bericht zum mFUND-Fachaustausch Luftschadstoffe, 18. Juni 2019

Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste 17 February 2022 (has links)
Am 18. Juni 2019 trafen sich beim Fachaustausch Luftschadstoffe der mFUND-Begleitforschung des WIK mehr als 20 Fachleute, um neue Ansätze zur Messung, Prognose und Visualisierung von Luftschadstoffen zu diskutieren.
3

Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority

Keblawi, Mahmud, Toledo, Tomer 23 June 2023 (has links)
In traffic networks, appropriately determining the traffic signal plan of each intersection is a ünecessary condition for a reasonable level of service. This paper presents the development of a new system for automatically designing optimal actuated traffic signal plans with transit signal priority. It uses an optimization algorithm combined with a mesoscopic traffic simulation model to design and evaluate optimal traffic signal plans for each intersection in the traffic network, therefore reducing the need for human intervention in the design process. The proposed method can simultaneously determine the optimal logical structure, priority strategies, timing parameters, phase composition and sequence, and detector placements. The integrated system was tested by a real-world isolated intersection in Haifa city. The results demonstrated that this approach has the potential to efficiently design signal plans without human intervention, which can minimize time, cost, and design effort. It can also help uncover problems in the design that may otherwise not be detected.
4

Proceedings of the 4th Symposium on Management of Future Motorway and Urban Traffic Systems 2022

Wang, Meng, Jaekel, Birgit, Lehnert, Martin, Zhou, Runhao, Li, Zirui 13 June 2023 (has links)
The 4th Symposium on Management of Future Motorway and Urban Traffic Systems (MFTS) was held in Dresden, Germany, from November 30th to December 2nd, 2022. Organized by the Chair of Traffic Process Automation (VPA) at the “Friedrich List” Faculty of Transport and Traffic Sciences of the TU Dresden, the proceedings of this conference are published as volume 9 in the Chair’s publication series “Verkehrstelematik” and contain a large part of the presented conference extended abstracts. The focus of the MFTS conference 2022 was cooperative management of multimodal transport and reflected the vision of the professorship to be an internationally recognized group in ITS research and education with the goal of optimizing the operation of multimodal transport systems. In 14 MFTS sessions, current topics in demand and traffic management, traffic control in conventional, connected and automated transport, connected and autonomous vehicles, traffic flow modeling and simulation, new and shared mobility systems, digitization, and user behavior and safety were discussed. In addition, special sessions were organized, for example on “Human aspects in traffic modeling and simulation” and “Lesson learned from Covid19 pandemic”, whose descriptions and analyses are also included in these proceedings.:1 Connected and Automated Vehicles 1.1 Traffic-based Control of Truck Platoons on Freeways 1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic 1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations 1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency? 1.5 GLOSA System with Uncertain Green and Red Signal Phases 2 New Mobility Systems 2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks 2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network 3 Traffic Flow and Simulation 3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory 3.2 A RoundD-like Roundabout Scenario in CARLA Simulator 3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study 3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions 3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads 4 Traffic Control in Conventional Traffic 4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics 4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control 4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation 4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority 4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority 4.6 Towards Efficient Incident Detection in Real-time Traffic Management 4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control 5 Traffic Control with Autonomous Vehicles 5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles 5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration 6 User Behaviour and Safety 6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections 7 Demand and Traffic Management 7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data 7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices 8 Workshops 8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility 8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the Future / Das 4. Symposium zum Management zukünftiger Autobahn- und Stadtverkehrssysteme (MFTS) fand vom 30. November bis 2. Dezember 2022 in Dresden statt und wurde vom Lehrstuhl für Verkehrsprozessautomatisierung (VPA) an der Fakultät Verkehrswissenschaften„Friedrich List“ der TU Dresden organisiert. Der Tagungsband erscheint als Band 9 in der Schriftenreihe „Verkehrstelematik“ des Lehrstuhls und enthält einen Großteil der vorgestellten Extended-Abstracts des Symposiums. Der Schwerpunkt des MFTS-Symposiums 2022 lag auf dem kooperativen Management multimodalen Verkehrs und spiegelte die Vision der Professur wider, eine international anerkannte Gruppe in der ITS-Forschung und -Ausbildung mit dem Ziel der Optimierung des Betriebs multimodaler Transportsysteme zu sein. In 14 MFTS-Sitzungen wurden aktuelle Themen aus den Bereichen Nachfrage- und Verkehrsmanagement, Verkehrssteuerung im konventionellen, vernetzten und automatisierten Verkehr, vernetzte und autonome Fahrzeuge, Verkehrsflussmodellierung und -simulation, neue und geteilte Mobilitätssysteme, Digitalisierung sowie Nutzerverhalten und Sicherheit diskutiert. Darüber hinaus wurden Sondersitzungen organisiert, beispielsweise zu „Menschlichen Aspekten bei der Verkehrsmodellierung und -simulation“ und „Lektionen aus der Covid-19-Pandemie“, deren Beschreibungen und Analysen ebenfalls in diesen Tagungsband einfließen.:1 Connected and Automated Vehicles 1.1 Traffic-based Control of Truck Platoons on Freeways 1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic 1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations 1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency? 1.5 GLOSA System with Uncertain Green and Red Signal Phases 2 New Mobility Systems 2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks 2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network 3 Traffic Flow and Simulation 3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory 3.2 A RoundD-like Roundabout Scenario in CARLA Simulator 3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study 3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions 3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads 4 Traffic Control in Conventional Traffic 4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics 4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control 4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation 4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority 4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority 4.6 Towards Efficient Incident Detection in Real-time Traffic Management 4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control 5 Traffic Control with Autonomous Vehicles 5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles 5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration 6 User Behaviour and Safety 6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections 7 Demand and Traffic Management 7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data 7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices 8 Workshops 8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility 8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the Future
5

Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study

Sautter, Natalie, Kessler, Lisa, Belikhov, Danil, Bogenberger, Klaus 23 June 2023 (has links)
Multimodality is a main requirement for future Urban Traffic Control (UTC). For cities and traffic engineers to implement multimodal UTC, a holistic, multimodal assessment of UTC measures is needed. This paper proposes a Multimodal Performance Index (MPI), which considers the delays and number of stops of different transport modes that are weighted to each other. To determine suitable mode-specific weights, a case study for the German city Ingolstadt is conducted using the microscopic simulation tool SUMO. In the case study, different UTC measures (bus priority, coordination for cyclists, coordination for private vehicle traffic) are implemented to a varying extent and evaluated according to different weight settings. The MPI calculation is done both network-wide and intersection-specific. The results indicate that a weighting according to the occupancy level of modes, as mainly proposed in the literature so far, is not sufficient. This applies particularly to cycling, which should be weighted according to its positive environmental impact instead of its occupancy. Besides, the modespecific weights have to correspond to the traffic-related impact of the mode-specific UTC measures. For Ingolstadt, the results are promising for a weighting according to the current modal split and a weighting with incentives for sustainable modes.
6

On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads

Zhang, Chao, Li, Yechen, Arora, Neha, Osorio, Carolina 23 June 2023 (has links)
Being widely adopted by the transportation and planning practitioners, the fundamental diagram (FD) is the primary tool used to relate the key macroscopic traffic variables of speed, flow, and density. We empirically analyze the relation between vehicular space-mean speeds and flows given different signal settings and postulate a parsimonious parametric function form of the traditional FD where its function parameters are explicitly modeled as a function of the signal plan factors. We validate the proposed formulation using data from signalized urban road segments in Salt Lake City, Utah, USA. The proposed formulation builds our understanding of how changes to signal settings impact the FDs, and more generally the congestion patterns, of signalized urban segments.
7

Local Traffic Safety Analyzer – Improved Road Safety and Optimized Signal Control for Future Urban Intersections

Eggers, Kim Jannik, Oertel, Robert, Hesse, Martin 23 June 2023 (has links)
Improving road safety and optimizing the traffic flow – these are major challenges at urban intersections. In particular, strengthening the needs of vulnerable road users (VRUs) such as pedestrians, cyclists and e-scooter drivers is becoming increasingly important, combined with support for automated and connected driving. In the LTSA project, a new system is being developed and implemented exactly for this purpose. The LTSA is an intelligent infrastructure system that records the movements of all road users in the vicinity of an intersection using a combination of several locally installed sensors e.g. video, radar, lidar. AI-based software processes the detected data, interprets the movement patterns of road users and continuously analyzes the current traffic situation (digital twin). Potentially dangerous situations are identified, e.g. right turning vehicles and simultaneously crossing VRUs, and warning messages can be sent to connected road users via vehicle-to-infrastructure communication (V2X). Automated vehicles can thus adapt their driving maneuvers. In addition, the collected data is applied to improve traffic light control depending on the current traffic situation, especially for VRUs. This abstract describes the LTSA system and its implementation in the German city of Potsdam. The current project state is presented and an outlook on next steps is given.

Page generated in 0.1087 seconds