21 |
Vibration Analysis of Anisotropic plates, Special Case: ViolinLomte, Chaitanya J. January 2013 (has links)
No description available.
|
22 |
Vibration analysis of a carbon nanotube in the presence of a graphene sheetNimmalapalli, Sunny Rahul 21 October 2016 (has links)
No description available.
|
23 |
Analysis of high speed radially rotating high-temperature heat pipesGonzalez, Luis O. 01 January 2007 (has links)
Internal convective cooling is a method by which components, such as gas turbine blades, are protected from damage caused by elevated temperatures. Heat pipes are structures that transport and dissipate large quantities of pressurized thermal energy. The thermal energy is transported from a heat source to a thermal sink via evaporative cooling. A radially rotating high temperature heat pipe employs centrifugal force to return or drive the working saturated-vapor mixture from the condenser section to the evaporator section. A rotating heat rig is being developed at the University of Central Florida (UCF) in order to gain a better understanding of the interaction between thermal Conductivity, rotational speed, operating temperatures and thermal loads. As a part of its development, this study will focus on identifying key factors that maximize the first critical speeds on rotating heat pipe assemblies having non-uniform temperature distributions. It was found that in order to avoid reaching the first critical speed the use of double bearings should be implemented. Since the temperature of the heat pipe will be non-uniform, this will have a minimal effect on the critical speed of the rotating rig. The first phase of the construction of the rotating rig will be stable and will provide valuable test data without reaching any critical speeds.
|
24 |
Using Vibration Analysis to Determine Refrigerant Levels In an Automotive Air Conditioning SystemStasiunas, Eric Carl 15 July 2002 (has links)
Presently, auto manufacturers do not have do not have efficient or accurate methods to determine the amount of refrigerant (R-134a) in an air conditioning system of an automobile. In the research presented, vibration analysis is examined as a possible method to determine this R-134a amount. Initial laboratory tests were completed and experimental modal analysis methods were investigated. This approach is based on the hypothesis that the natural frequency of the accumulator bottle is a function of the mass of refrigerant in the system. Applying this theory to a working automotive air conditioning bench test rig involved using the roving hammer method—forcing the structure with an impact hammer at many different points and measuring the resulting acceleration at one point on the structure. The measurements focused on finding the natural frequency at the accumulator bottle of the air condition system with running and non-running compressor scenarios. The experimental frequency response function (FRF) results indicate distinct trends in the change of measured cylindrical natural frequencies as a function of refrigerant level. Using the proposed modal analysis method, the R-134a measurement accuracy is estimated at ±3 oz of refrigerant in the running laboratory system and an accuracy of ±1 oz in the non-running laboratory system. / Master of Science
|
25 |
[en] BUCKLING AND VIBRATION ANALYSIS OF SHALLOW CONOIDAL SHELLS / [pt] ANÁLISE DA ESTABILIDADE E VIBRAÇÕES DE CASCAS CONOIDAIS ABATIDASLILIAN DE VASCONCELLOS CAVALCANTI 22 May 2015 (has links)
[pt] Estruturas de cascas delgadas descritas por superfícies regradas têm sido frequentemente utilizadas em engenharia civil, devido ao fato de que elas são uma das soluções estruturais mais econômicos para cobrir grandes vãos. Superfícies regradas são obtidas pelo movimento de uma ou mais linhas ao longo de uma ou mais curvas. Sendo assim, elas são fáceis de construir, o que justifica a sua escolha em muitos casos. Por razões estéticas e estruturais, estas estruturas são geralmente superfícies abatidas, o que leva, como no caso de arcos abatidos, a uma forte não linearidade geométrica. Entre as cascas descritas por superfícies regradas, as cascas conoidais são frequentemente favorecidas para coberturas de grandes áreas livres de colunas, pela facilidade de construção, elegância estética e pelo bom fornecimento de luz natural. Uma casca conoidal é um caso especial de cilindróide, pertencente às superfícies de Catalan, e é gerada por uma linha reta em movimento paralelo a um plano, conhecido como o plano diretor, com uma de suas extremidades em uma curva plana e a outra em uma linha reta. Por vezes, uma parte da superfície conoidal no extremo reto é suprimida dando origem a uma configuração truncada. O objetivo deste trabalho é analisar, utilizando uma formulação de elementos finitos, as características de flambagem e vibração desta forma estrutural. Uma análise paramétrica detalhada é realizada para compreender a influência das condições de contorno e dimensões físicas da casca no seu comportamento estático e dinâmico. São apresentadas conclusões específicas no final do trabalho, para resumir os resultados do presente estudo, que pretende servir como importante subsídio para os engenheiros envolvidos na construção de estruturas similares. / [en] Slender shell structures described by ruled surfaces have been frequently used in civil engineering due to the fact that they are one of the most economical structural solutions to cover large spans. Ruled surfaces are obtained by the movement of one or more lines along one or more curves. So they are easy to cast, which justifies their choice in many cases. For aesthetic and structural reasons these structures are usually shallow surfaces, which leads, as in the case of shallow arches, to a strong geometric nonlinearity. Among the shells described by ruled surfaces, conoidal shells are frequently favored as roofing units to cover large column-free areas due to the ease of fabrication, aesthetic elegance and good provision of natural light. A conoidal shell is a special case of cylindroids belonging to Catalan’s surfaces and is generated by a variable straight line moving parallel to a plane, known as the director plane, with one of its ends on a plane curve and the other on a straight line. Sometimes a part of the conoidal surface at the straight end is cut off giving a truncated configuration. The objective of this work is to analyze, using a finite element formulation, the buckling and vibration characteristics of this structural form. A detailed parametric analysis is conducted to understand the influence of boundary conditions, different spans, widths, and other physical dimensions on the static and dynamic characteristics of the structure. Specific conclusions are drawn at the end, to summarize the contributions of the present investigation, which are expected to serve as important design aids to engineers engaged in shell construction.
|
26 |
Diagnosis of low-speed bearing degradation using acoustic emission techniquesAlshimmeri, Fiasael January 2017 (has links)
It is widely acknowledged that bearing failures are the primary reason for breakdowns in rotating machinery. These failures are extremely costly, particularly in terms of lost production. Roller bearings are widely used in industrial machinery and need to be maintained in good condition to ensure the continuing efficiency, effectiveness, and profitability of the production process. The research presented here is an investigation of the use of acoustic emission (AE) to monitor bearing conditions at low speeds. Many machines, particularly large, expensive machines operate at speeds below 100 rpm, and such machines are important to the industry. However, the overwhelming proportion of studies have investigated the use of AE techniques for condition monitoring of higher-speed machines (typically several hundred rpm, or even higher). Few researchers have investigated the application of these techniques to low-speed machines ( < 100 rpm), This PhD addressed this omission and has established which, of the available, AE techniques are suitable for the detection of incipient faults and measurement of fault growth in low-speed bearings. The first objective of this research program was to assess the applicability of AE techniques to monitor low-speed bearings. It was found that the measured statistical parameters successfully monitored bearing conditions at low speeds (10-100 rpm). The second objective was to identify which commonly used statistical parameters derived from the AE signal (RMS, kurtosis, amplitude and counts) could identify the onset of a fault in either race. It was found that the change in AE amplitude and AE RMS could identify the presence of a small fault seeded into either the inner or the outer races. However, the severe attenuation of the signal from the inner race meant that, while AE amplitude and RMS could readily identify the incipient fault, kurtosis and the AE counts could not. Thus, more attention needs to be given to analysing the signal from the inner race. The third objective was to identify a measure that would assess the degree of severity of the fault. However, once the defect was established, it was found that of the parameters used only AE RMS was sensitive to defect size. The fourth objective was to assess whether the AE signal is able to detect defects located at either the centre or edge of the outer race of a bearing rotating at low speeds. It is found that all the measured AE parameters had higher values when the defect was seeded in the middle of the outer race, possibly due to the shorter path traversed by the signal between source and sensor which gave a lower attenuation than when the defect was on the edge of the outer race. Moreover, AE can detect the defect at both locations, which confirmed the applicability of the AE to monitor the defects at any location on the outer race.
|
27 |
Techniques for condition monitoring using cyclo-non-stationary signalsBarbini, Leonardo January 2018 (has links)
Condition based maintenance is becoming increasingly popular in many industrial contexts, offering substantial savings and minimising accidental damage. When applied to rotating machinery, its most common tool is vibration analysis, which relies on well-established mathematical models rooted in the theory of cyclo-non-stationary processes. However, the extraction of diagnostic information from the real world vibration signals is a delicate task requiring the application of sophisticated signal processing techniques, tailored for specific machines operating under restricted conditions. Such difficulty in the current state of the art of vibration analysis forces the industry to apply methods with reduced diagnostic capabilities but higher adaptability. However in doing so most of the potential of vibration analysis is lost and advanced techniques become of use only for academic endeavours. The aim of this document is to reduce the gap between industrial and academic applications of condition monitoring, offering ductile and automated tools which still show high detection capabilities. Three main lines of research are presented in this document. Firstly, the implementation of stochastic resonance in an electrical circuit to enhance directly the analog signal from an accelerometer, in order to lower the computational requirements in the next digital signal processing step. Secondly, the extension of already well-established digital signal processing techniques, cepstral prewhitening and spectral kurtosis, to a wider range of operating conditions, proving their effectiveness in the case of non-stationary speeds. Thirdly, the main contribution of the thesis: the introduction of two novel techniques capable of separating the vibrations of a defective component from the overall vibrations of the machine, by means of a threshold in the amplitude spectrum. After the separation, the cyclic content of the vibration signal is extracted and the thresholded signals provide an enhanced detection. The two proposed methods, phase editing and amplitude cyclic frequency decomposition, are both intuitive and of low computational complexity, but show the same capabilities as more sophisticated state of the art techniques. Furthermore, all these tools have been successfully tested on numerically simulated signals as well as on real vibration data from different machinery, lasting from laboratory test rigs to wind turbines drive-trains and aircraft engines. So in conclusion, the proposed techniques are a promising step toward the full exploitation of condition based maintenance in industrial contexts.
|
28 |
Analys av algoritmer för detektering av resonansfrekvenser i vibrationsmätningar på överhettartuber / Analysis of algorithms for detection of resonance frequencies in vibration measurements on super heater tubesEriksson, Daniel January 2010 (has links)
<p>På överhettartuber i värmepannor bildas beläggningar på grund av sot och partiklar från förbränningen. Beläggningarna isolerar överhettartuberna vilket försämrar värmepannans verkningsgrad. Sotning av tuberna sker under drift och ett system som automatiskt kan beräkna hur mycket beläggningar som finns på tuberna skulle kunna göra sotningen mer behovsstyrd.Resonansfrekvenser hos överhettartuberna påverkas av masspåslaget som blir när beläggningar bildas. En förändring i frekvens kan då översättas till en förändring i massa. Vibrationsmätningar har gjorts med töjningsgivare som är monterade på överhettartuber i en av Ryaverkets pannor och i SAKAB:s panna. I detta examensarbete har syftet varit att analysera olika metoder för att skatta resonansfrekvenser i genomförda mätningar. Algoritmerna MUSIC, ESPRIT och AR samt en heuristisk statistisk metod har testats på genererade signaler. MUSIC och ESPRIT har givit bäst skattningar och har därefter använts för att analysera mätningarna. Periodvis följer vissa skattningar av mätningar från Ryaverket trender mellan sotningarna vilket indikerar att det skulle kunna vara resonansfrekvenser. Annars innehåller skattningarna för mycket variationer. Skattningarna av mätningar från SAKAB:s panna är gjorda under en kortare tidsperiod men visar en tydligare trend som troliggör att det är resonansfrekvenser som detekterats.För att automatiskt hitta och följa resonansfrekvenser i skattningarna, även om dessa innehåller stora variationer, har en målföljningsalgoritm implementerats. Algoritmen hittar skattningar som följer en förväntad trend mellan sotningarna. Tester visar att algoritmen hittar troliga resonansfrekvenser i skattningarna men att det är svårt att kunna dra några slutsatser om skattningarna varierar för mycket. Bättre signaler skulle kunna minska variationerna hos skattningarna. Ett förslag presenteras hur MUSIC eller ESPRIT tillsammans med en målföljningsalgoritm skulle kunna användas för att beräkna masspåslag på överhettartuberna.</p> / <p>Combustion in thermal power plants emits particles which create coatings on the super heater tubes. The coatings insulate the tubes and impairs the efficiency of the heat transfer. Cleaning the tubes occurs while the power plant is running and a system that automatically calculates the amount of coatings could make the cleaning more needs-based. The resonance frequencies of the super heater tubes are affected by the added mass of the coatings. A change in frequency corresponds to a change in mass. Vibration measurements have been made with strain gauges on the super heater tubes in Ryaverket's power plant and in one of SAKAB's power plants. The purpose of this thesis work has been to analyse different methods to estimate resonance frequencies in the vibration measurements. ESPRIT, MUSIC, AR and a heuristic statistical method have been tested on generated signals. MUSIC and ESPRIT have given the best estimations and have thus been used to analyse the measurements. Periodically some estimations of measurements from Ryaverket are following trends which indicates that they could be resonance frequencies. The rest of the estimations contain too large variations. The estimations made of the measurements from SAKAB have been made during a shorter time period but shows clearer trends which make them probable resonance frequencies.To automatically trace resonance frequencies in the estimations, even though they contains large variations, a target tracking algorithm has been implemented. The algorithm finds estimations that follows expected trends between the cleaning periods. Tests shows that the target tracking algorithm finds probable resonance frequencies in the estimations but that it is hard to reach a conclusion if they contain large variations. Better measurements could give estimations with smaller variations.An idea is presented where MUSIC or ESPRIT together with a target tracking algorithm could be used to calculate the amount of coatings on the super heater tubes.</p>
|
29 |
Automatic diagnostic system for I-shift transmission using vibration analysis / Automatiserat feldetekteringssystem för I-shift växellådor med hjälp av vibrationsanalysLennartsson, Richard January 2010 (has links)
<p>This master’s thesis work was performed at Volvo Powertrain in Köping, Sweden, which manufactures gearboxes and integrated transmission systems for heavy vehicles. The thesis is a continuation of a previous master’s thesis performed at the Köping factory in 2009. After manufacturing and assembly, each gearbox is manually validated to ensure the gearbox quality and functionality. When validating the gearbox gears, the operator shifts the gearbox in a predefined manner and listens for irregularities. If an error sound is heard the operator must then locate the source of error. With numerous of cog wheels rotating at the same time this task requires extensive knowledge and experience of the operator. The main objective is to develop an automatic diagnostic system for detection of cog errors and assist the operator in the process of locating the faulty component.</p><p>The work consists of two parts. In the first part the automatic diagnostic system is developed and a database of gearbox recordings is stored. The amounts of logged non-faulty gearboxes are significantly much larger (50) than the logged faulty gearboxes (1). Therefore, when determining thresholds needed for the diagnosis, the data obtained from the non-faulty gearboxes are used. Two statistical methods are presented to extract the thresholds. The first method uses an extremevalue distribution and the other method a Gaussian distribution. When validated, both methods did successfully detect on cog faults. In the second part an investigation is made of how shaft imbalance can be detected and implemented in the developed system.</p><p>Volvo Powertrain continually follows-up all faults found at the validation station to ensure the quality of their work and eliminate the sources of error. During system testing one logged gearbox was found faulty. The automatic diagnostic system did successfully detect and locate the faulty component which later also was confirmed when the gearbox was dismounted. With only one detected error it is difficult to conclude the system performance and further testing is required. However, during the testing no false detections were made.</p>
|
30 |
Validation of computer-generated results with experimental data obtained for torsional vibration of synchronous motor-driven turbomachineryGanatra, Nirmal Kirtikumar 30 September 2004 (has links)
Torsional vibration is an oscillatory angular twisting motion in the rotating members of a system. It can be deemed quite dangerous in that it cannot be detected as easily as other forms of vibration, and hence, subsequent failures that it leads to are often abrupt and may cause direct breakage of the shafts of the drive train. The need for sufficient analysis during the design stage of a rotating machine is, thus, well justified in order to avoid expensive modifications during later stages of the manufacturing process. In 1998, a project was initiated by the Turbomachinery Research Consortium (TRC) at Texas A&M University, College Station, TX, to develop a suite of computer codes to model torsional vibration of large drive trains. The author had the privilege of developing some modules in Visual Basic for Applications (VBA-Excel) for this suite of torsional vibration analysis codes, now collectively called XLTRC-Torsion. This treatise parleys the theory behind torsional vibration analysis using both the Transfer Matrix approach and the Finite Element approach, and in particular, validates the results generated by XLTRC-Torsion based on those approaches using experimental data available from tests on a 66,000 HP Air Compressor.
|
Page generated in 0.1031 seconds