1 |
Density Functional Theory Study of Vibrational Spectra. 1. Performance of Several Density Functional Methods in Predicting Vibrational FrequenciesZhou, Xuefeng, Wheeless, Christine J.M., Liu, Ruifeng 01 January 1996 (has links)
Harmonic vibrational frequencies of several small organic molecules which were used to validate the scaled quantum mechanical (SQM) force field procedure of Pulay et al. were calculated using six popular density functional (DFT) methods and compared with experimental results. The combination of Becke's exchange with either Lee-Yang-Parr (BLYP) or Perdew's correlation functional (BP86) reproduces the observed frequencies satisfactorily with deviations similar to those of the Hartree-Fock SQM methods. Three hybrid DFT methods are found to yield frequencies which were generally higher than the observed fundamental frequencies. When the calculated frequencies were compared with 'experimental' harmonic frequencies however, Becke's three-parameter hybrid method with Lee-Yang-Parr correlation functional is found to be slightly more accurate, especially for C-H stretching modes. The results indicate that BLYP calculation is a very promising approach for understanding the observed spectral features.
|
2 |
Theoretical thermochemistry and spectroscopy of weakly bound moleculesVarner, Mychel Elizabeth 02 February 2011 (has links)
The weakly bound association products of atmospherically relevant radical species (O₂, OH, NO₂, HO₂ and NO) have been studied theoretically using quantum-chemical methods. The thermodynamic stabilities, which are crucial to determining the probability of formation in Earth's atmosphere, were calculated for the hydrotrioxy radical (HOOO) and peroxynitrous acid (HOONO, an isomer of nitric acid) relative to the radical dissociation products. In the case of HOONO, the experimentally determined values were confirmed. For HOOO, the predicted stability was significantly lower than the experimentally determined value; a conclusion that was supported by later experimental work and indicates that HOOO will not form in significant quantities in Earth's atmosphere. The fundamental and multi-quantum vibrational transitions were also predicted for both the HOONO and HOOO systems. The theoretical work on the HOONO system aided the assignment of experimental spectra and was used to correct equilibrium rotational constants. The HOOO system presented a challenge for the methods used here and work to apply other approaches in describing the vibrational modes is ongoing. Second-order vibrational perturbation theory, combined with a correlated quantum-chemical method and a moderately sized basis set, provides a method for accurately predicting fundamental and low-order multi-quantum transition energies and intensities for many systems (HOOO being an exception). Here coupled cluster theory, at a level which treats one- and two-electron correlation with a correction for three-electron correlation, and atomic natural orbitals basis sets were used in the vibrational calculations. To predict the dissociation energies of weakly bound species with the precision required (due to the small energy differences involved), high-order correlation contributions (a full treatment of three-electron correlation and a correction for four-electron correlation) are included, as is extrapolation to the basis set limit. Other contributions, such as that for the zero-point energy, were also considered. For the HOOO system, one-dimensional potential curves along the dissociation and torsional coordinates were constructed with standard single-reference and equation-of-motion coupled-cluster methods. The latter is better able to describe the nature of a system in the bond-breaking region and the complex electronic structure of a species formed from two radical fragments, one doubly degenerate in the ground state: X²[Pi] OH and X³[Sigma] O₂. A possible barrier to dissociation and the torsional potential for HOOO were investigated. / text
|
3 |
Synthesis and investigation of an oxygen-evolving catalyst containing cobalt phosphateLarses, Patrik, Tegesjö, Lina January 2009 (has links)
No description available.
|
4 |
Physisorption of CO and N2O on ceria surfacesMüller, Carsten January 2009 (has links)
Physisorption of CO and N2O on surfaces of ceria (CeO2) was investigated by means of high-level quantum-mechanical embedded cluster calculations. Both systems have high relevance in the field of environmental chemistry and heterogeneous catalysis. The CO/CeO2 system, has been investigated in a couple of both experimental and theoretical studies, but for the N2O/CeO2 system, this is the first study in the literature, experimental or theoretical. In physisorption, the interaction relies entirely on classical electrostatic interactions and electron dispersion forces. No covalent bond is formed between the molecule and the surface. A proper description of the dispersion requires some of the most accurate quantum-mechanical methods available, such as MP2 or CCSD(T). Moreover, even the most sophisticated methods cannot heal errors anywhere else in the theoretical treatment. Standard periodic models cannot be used with methods such as CCSD(T), but embedded cluster models can, and have been thoroughly explored in this thesis. In this thesis, embedded cluster models were constructed for the CeO2(110) and (111) surfaces. Using a range of assessment tests, it was verified that the electronic structure of the central region of a large and fully embedded surface cluster agrees well with the corresponding region in a periodic system. CO physisorption was investigated at the CCSD(T) level. Due to the prohibitively large expenses (in computer time) for standard CCSD(T) calculations, the method of increments, previously used in the literature for bulk systems, was extended to adsorption problems. It was found that, electron correlation contributes by 30 - 80% to the molecule-surface interaction and that the contribution depends on the topology of the surface. The calculated CO-ceria interaction energy is 20 kJ/mol for the (111) surface and 27 kJ/mol for the (110) surface. In low temperature TPD experiments for the N2O/CeO2(111) system, one surface species was found with an adsorption energy of about 29 kJ/mol. IR measurements showed stretching frequencies that are typically assigned to N2O adsorption with the O-end directed towards surface cations. However, theoretical calculations up to the MP2 level predicted two equally favorable adsorption species. Improvements in the structural model (larger clusters, consideration of molecule-induced relaxation) or the computational method (larger basis sets) did not affect this result. Only at the CCSD(T) level was one dominating surface species found, namely N2O adsorbed over a Ce ion, with the O-end of the molecule directed towards the surface. The calculated stretching vibrational frequency shifts (with respect to the gas phase) for this adsorbed species agree well with the measured IR spectra.
|
5 |
Propriedades vibracionais de defeitos de nitrogênio em nanotubos de carbono / Vibrational Properties of Nitrogen Defects on Carbon NanotubesSilva, Leandro de Andrade 03 November 2008 (has links)
O trabalho anteriormente realizado pelo nosso grupo, onde foram simulados defeitos de nitrogênio em nanotubos de carbono, apresentou resultados interessantes relativos às energias e propriedades eletrônicas. A interpretacão dos resultados teóricos obtidos levou à proposta da Divacância rodeada por 4 Nitrogênios como estrutura mais estável para o nitrogênio tipo piridina, em constraste com aquela proposta pelos experimentais, uma Monovacância rodeada por 3 Nitrogênios. Os cálculos das propriedades eletrônicas da Divacância reproduziram as medidas experimentais na investigação de sensores de amônia. Dessa forma, como informação adicional na determinaçã da estrutura mais estável, o presente trabalho investigou as propriedades vibracionais daqueles sistemas que apresentaram menor energias de formação. Foram calculadas as freqüências vibracionais dos seguintes três defeitos: Nitrogênio Substitucional (1N), Monovacância rodeada por 3 Nitrogênios (3NV) e Divacância rodeada por 4 Nitrogênios (4ND) e comparadas com os resultados para os tubos puros. Utilizou-se a aproximação de supercélula, com 140 átomos para um tubo metálico (5,5) e 160 para um tubo semicondutor (8,0). Como o objetivo é identificar as características de cada sistema, focalizou-se na comparação dos valores das freqüências Raman ativas mais intensas. Os cálculos foram realizados com o código SIESTA, utilizando DFT com o formalismo dos pseudopotenciais e a aproximação GGA-PBE. As freqüências foram obtidas pelo Método Direto pelo mesmo programa. Os resultados mostraram diferenças quanto à quebra de degenerescências, que ocorre devido à quebra da simetria do sistema puro e quanto à mudança dos valores das freqüências dos modos. Como característica geral, os defeitos fazem com que as freqüências da banda mais baixa de energia do espectro Raman sofram shifts negativos, ou seja, afastam os picos para energias mais baixas. O modo de freqüência intermediária sofre um shift positivo e os modos da banda G voltam a apresentar valores negativos. Os splittings, bem como os valores numéricos dos shifts variam conforme o tipo de defeito e o tipo de sistema dopado (armchair ou zig-zag). Apesar de não apresentar diferenças consideravelmente grandes para os valores de shifts e splittings entre os defeitos, o comportamento qualitativo distinto para os modos RBMs é uma boa ferramenta para a diferenciação desses defeitos através de espectroscopia vibracional. / A previous work developed in our own group on which nitrogen defects on carbon nanotubes were simulated presented very interesting results regarding the energetics and the electronic properties. The interpretation of the theoretical outcomes led us to propose the Divacancy surrounded by 4 nitrogen atoms as the most stable structure for a pyridine-like nitrogen, in contrast to the one proposed by the experimentalists, namely the Monovacancy surrounded by 3 nitrogen atoms. Calculations of the electronic properties of the Divacancy have reproduced the experimental data. In this way as additional information for determining the actual most stable structure the present work investigated the vibrational properties of those systems that showed the lowest formation energies. We performed the calculations of the vibrational frequencies for the following three defects: Substitutional nitrogen atom (1N), Monovacancy surrounded by 3 nitrogen atoms (3NV) and Divacancy surrounded by 4 nitrogen atoms (4ND). Then the frequencies were compared to those ones from the pure tubes. We used the supercell approximation with 140 atoms for a (5,5) metallic tube and 160 for a (8,0) semiconducting tube. Since the present work aims to identify the main features of each system we focused on the comparison of the values of the strongest Raman active modes. All the calculations were carried out by the SIESTA code, using DFT with the pseudopotential formalism and GGA approximation. Then the frequencies were evaluated using the Direct Method. The results showed differences on the degeneracy splittings, which are caused by the symmetry-breaking due to the introduction of defects, and also differences on the shifts of the numerical values of the frequencies. As general feature, the defects caused the low band frequencies modes of Raman spectrum to have a negative shift, i.e. they push the peaks further to lower energies. The intermediate mode shifts positively and the G band modes show negative shifts again. The splittings as well as those shifts change depending on the type of the defect and the type of the doped system (armchair or zig-zag). Although not showing significant differences for shifts and splittings between the defects, the qualitatively distinct behavior for RBMs modes is a good tool to tell them apart using vibrational spectroscopy.
|
6 |
Synthesis and investigation of an oxygen-evolving catalyst containing cobalt phosphateLarses, Patrik, Tegesjö, Lina January 2009 (has links)
The experimental section in this thesis was based on the work of Kanan, M.W, et al reported in Science in December of 2008. A catalyst containing cobalt and phosphate was synthesized and used to decompose water into oxygen and hydrogen. This was done at nearly neutral pH. Cyclic voltammetry was performed to analyze the catalyst’s efficiency. Some surfaces were analyzed in a scanning electron microscope and the elemental composition was determined using energy-dispersive X-ray spectroscopy. A catalytic effect was observed at a potential of about 1,3 V. EDX showed Co at some of the surfaces. Quantum calculations were used to develop a model for the catalyst material. Molecular orbitals, interaction energies and vibrational frequencies were calculated for two different complexes of Co and phosphate. Patrik Larses was responsible for the electrochemical evaluation and synthesis in the experimental section of this thesis and Lina Tegesjö for the computational part.
|
7 |
Propriedades vibracionais de defeitos de nitrogênio em nanotubos de carbono / Vibrational Properties of Nitrogen Defects on Carbon NanotubesLeandro de Andrade Silva 03 November 2008 (has links)
O trabalho anteriormente realizado pelo nosso grupo, onde foram simulados defeitos de nitrogênio em nanotubos de carbono, apresentou resultados interessantes relativos às energias e propriedades eletrônicas. A interpretacão dos resultados teóricos obtidos levou à proposta da Divacância rodeada por 4 Nitrogênios como estrutura mais estável para o nitrogênio tipo piridina, em constraste com aquela proposta pelos experimentais, uma Monovacância rodeada por 3 Nitrogênios. Os cálculos das propriedades eletrônicas da Divacância reproduziram as medidas experimentais na investigação de sensores de amônia. Dessa forma, como informação adicional na determinaçã da estrutura mais estável, o presente trabalho investigou as propriedades vibracionais daqueles sistemas que apresentaram menor energias de formação. Foram calculadas as freqüências vibracionais dos seguintes três defeitos: Nitrogênio Substitucional (1N), Monovacância rodeada por 3 Nitrogênios (3NV) e Divacância rodeada por 4 Nitrogênios (4ND) e comparadas com os resultados para os tubos puros. Utilizou-se a aproximação de supercélula, com 140 átomos para um tubo metálico (5,5) e 160 para um tubo semicondutor (8,0). Como o objetivo é identificar as características de cada sistema, focalizou-se na comparação dos valores das freqüências Raman ativas mais intensas. Os cálculos foram realizados com o código SIESTA, utilizando DFT com o formalismo dos pseudopotenciais e a aproximação GGA-PBE. As freqüências foram obtidas pelo Método Direto pelo mesmo programa. Os resultados mostraram diferenças quanto à quebra de degenerescências, que ocorre devido à quebra da simetria do sistema puro e quanto à mudança dos valores das freqüências dos modos. Como característica geral, os defeitos fazem com que as freqüências da banda mais baixa de energia do espectro Raman sofram shifts negativos, ou seja, afastam os picos para energias mais baixas. O modo de freqüência intermediária sofre um shift positivo e os modos da banda G voltam a apresentar valores negativos. Os splittings, bem como os valores numéricos dos shifts variam conforme o tipo de defeito e o tipo de sistema dopado (armchair ou zig-zag). Apesar de não apresentar diferenças consideravelmente grandes para os valores de shifts e splittings entre os defeitos, o comportamento qualitativo distinto para os modos RBMs é uma boa ferramenta para a diferenciação desses defeitos através de espectroscopia vibracional. / A previous work developed in our own group on which nitrogen defects on carbon nanotubes were simulated presented very interesting results regarding the energetics and the electronic properties. The interpretation of the theoretical outcomes led us to propose the Divacancy surrounded by 4 nitrogen atoms as the most stable structure for a pyridine-like nitrogen, in contrast to the one proposed by the experimentalists, namely the Monovacancy surrounded by 3 nitrogen atoms. Calculations of the electronic properties of the Divacancy have reproduced the experimental data. In this way as additional information for determining the actual most stable structure the present work investigated the vibrational properties of those systems that showed the lowest formation energies. We performed the calculations of the vibrational frequencies for the following three defects: Substitutional nitrogen atom (1N), Monovacancy surrounded by 3 nitrogen atoms (3NV) and Divacancy surrounded by 4 nitrogen atoms (4ND). Then the frequencies were compared to those ones from the pure tubes. We used the supercell approximation with 140 atoms for a (5,5) metallic tube and 160 for a (8,0) semiconducting tube. Since the present work aims to identify the main features of each system we focused on the comparison of the values of the strongest Raman active modes. All the calculations were carried out by the SIESTA code, using DFT with the pseudopotential formalism and GGA approximation. Then the frequencies were evaluated using the Direct Method. The results showed differences on the degeneracy splittings, which are caused by the symmetry-breaking due to the introduction of defects, and also differences on the shifts of the numerical values of the frequencies. As general feature, the defects caused the low band frequencies modes of Raman spectrum to have a negative shift, i.e. they push the peaks further to lower energies. The intermediate mode shifts positively and the G band modes show negative shifts again. The splittings as well as those shifts change depending on the type of the defect and the type of the doped system (armchair or zig-zag). Although not showing significant differences for shifts and splittings between the defects, the qualitatively distinct behavior for RBMs modes is a good tool to tell them apart using vibrational spectroscopy.
|
Page generated in 0.123 seconds