11 |
Microcosm study of enhanced biotransformation of vinyl chloride to ethylene with TCE additions under anaerobic conditions from Point Mugu, CaliforniaPang, Incheol Jonathan 25 September 2000 (has links)
This microcosm study demonstrated the enhanced anaerobic transformation
of vinyl chloride (VC) to ethylene. A previous microcosm study from Point Mugu
site showed the accumulation of VC due to the slow transformation step of VC to
ethylene. To overcome the rate-limiting step, two laboratory experiments tested the
effect of trichloroethylene (TCE) additions on the rate enhancement, repeated low
TCE additions and high TCE concentration additions.
TCE (2 ��mol) was repeatedly added over a two week interval. In a parallel
study, an equal amount of VC was added to another set of microcosms. TCE
addition increased VC transformation to ethylene, with nearly 19% VC conversion
to ethylene compared to 4% VC conversion in the VC added controls. However,
the increased VC transformation rates were not sufficient enough to avoid VC
accumulation. Rate of VC transformation decreased once TCE addition was stopped. This indicated the mixed culture required the transformation of TCE to
maintain VC transformation rates.
With TCE added at high concentrations (100 mg/L and 200 mg/L), nearly
complete transformation of TCE to ethylene was observed. After the addition of
high TCE concentrations, low concentration TCE (3 ��mol) was added and near
95% transformed to ethylene in 45 days. Two different low hydrogen yielding
substrates, butyrate and propionate, were tested. Both were equally effective in
promoting TCE dechlorination. Methanogenesis was inhibited at high TCE
concentration with both substrates. Kinetic analysis of VC transformation data
showed VC transformation followed the first order kinetics with respect to
concentrations using a modified Monod equation. First-order kinetic constants
increased after the addition of high ICE concentrations. After 200 mg/L of TCE
addition, the first-order kinetic constant increased by factor of six compared to the
rate obtained from the earlier low TCE concentration addition. However,
reintroduction of TCE at low concentration maintained similar enhanced kinetic
constants, as achieved at high concentration. This indicated the enhancement of
VC transformation to ethylene was likely due to the growth of microorganisms
using TCE as a terminal electron acceptor. These microorganisms were likely
responsible for the transformation of VC to ethylene. / Graduation date: 2001
|
12 |
Thermal desorption techniques for the analysis of trace level VOC's in landfill gasAllen, Matthew Robert January 1998 (has links)
No description available.
|
13 |
Characterization of Reductive Dehalogenases in a Chlorinated Ethene-degrading Bioaugmentation CultureChan, Winnie Wing Man 06 April 2010 (has links)
Perchloroethene and trichloroethene are among the most persistent groundwater pollutants, and Dehalococcoides is the only known species that can degrade these compounds completely to non-toxic ethene. Characterization of the reductive dehalogenase (RDase) enzymes responsible for dechlorination is important to understanding this process. A series of dechlorination assays were performed with whole cell suspensions and cell-free extracts of three Dehalococcoides-containing mixed microbial consortia to compare dechlorination kinetics and to characterize co-contaminant inhibition. Michaelis-Menten kinetic parameters Vmax and Km, as well as non-competitive inhibition coefficients for 1,1,1-trichloroethane and 1,1-dichloroethane inhibitors are reported. Secondly, blue native gel electrophoresis was developed as a method to isolate active protein complexes containing RDases. Thirdly, sources of variability in the isotopic fractionation of vinyl chloride to ethene reaction step were examined using cell-free extracts and whole-cell suspensions. Understanding the function and range of RDases are goals towards the successful application of Dehalococcoides-containing cultures to remediate contaminated sites.
|
14 |
Characterization of Reductive Dehalogenases in a Chlorinated Ethene-degrading Bioaugmentation CultureChan, Winnie Wing Man 06 April 2010 (has links)
Perchloroethene and trichloroethene are among the most persistent groundwater pollutants, and Dehalococcoides is the only known species that can degrade these compounds completely to non-toxic ethene. Characterization of the reductive dehalogenase (RDase) enzymes responsible for dechlorination is important to understanding this process. A series of dechlorination assays were performed with whole cell suspensions and cell-free extracts of three Dehalococcoides-containing mixed microbial consortia to compare dechlorination kinetics and to characterize co-contaminant inhibition. Michaelis-Menten kinetic parameters Vmax and Km, as well as non-competitive inhibition coefficients for 1,1,1-trichloroethane and 1,1-dichloroethane inhibitors are reported. Secondly, blue native gel electrophoresis was developed as a method to isolate active protein complexes containing RDases. Thirdly, sources of variability in the isotopic fractionation of vinyl chloride to ethene reaction step were examined using cell-free extracts and whole-cell suspensions. Understanding the function and range of RDases are goals towards the successful application of Dehalococcoides-containing cultures to remediate contaminated sites.
|
15 |
Synthesis and in vitro replication studies of N5-alkylated formamidopyrimidine (FAPy-dGuo) adducts in DNAChristov, Plamen Petkov. January 2007 (has links)
Thesis (Ph. D. in Chemistry)--Vanderbilt University, Dec. 2007. / Title from title screen. Includes bibliographical references.
|
16 |
Synthesis, characterization and properties of novel phosphorylated multiwalled carbon nanotubes/polyvinyl chloride nanocompositesMkhabela, Vuyiswa J. 13 September 2011 (has links)
M.Sc. / Carbon nanotubes (CNTs) have been of utmost scientific interest since their discovery in 1991 by a Japanese physicist - Sumio Iijima. This is due to their extraordinary properties which make them one of the most promising options for the design of novel ultrahigh strength polymer nanocomposites. It is believed that the high aspect ratio, mechanical strength, and high electrical and thermal conductivity of these CNTs will enhance the performance of many polymer / CNT nanocomposites and open up new applications. However, poor dispersibility and lack of interfacial adhesion of the CNTs in the polymer matrix have remained a challenge towards fabrication of these nanocomposites. This has been due to the atomically smooth surface of the nanotubes and their intrinsic van der Waals forces which make them chemically inert. This study was aimed at exploring this concept by using novel phosphorylated multiwalled carbon nanotubes (p-MWCNTs) and polyvinyl chloride (PVC) polymer. Phosphorylation of MWCNTs has been successfully achieved in our laboratories, with the p-MWCNTs showing improvement in thermal stability. PVC on the other hand, is the world’s second largest thermoplastic material and has physical properties that are key technical advantages for its use in various and diverse fields such as building and construction, electronics, food packaging and in medical applications. A novel solvent-free method was used to synthesize p-MWCNTs / PVC nanocomposites. MWCNTs were synthesized by nebulized spray pyrolysis, a modification of catalytic vapour deposition and purified by soxhlet extraction using toluene. This method proved to be convenient and economical, producing a high yield of carbon nanotubes. The MWCNTs were phosphorylated with alkylazido phosphonate compounds through a 1,3-dipolar cycloaddition reaction between the phosphonate azides and the C=C bonds of the MWCNTs, with nitrogen loss occurring upon thermolysis. These p-MWCNTs were then melt compounded with PVC to form the p-MWCNTs / PVC nanocomposites. vii The phosphorylation of the MWCNTs and their dispersion in the PVC matrix were characterized by FTIR, SEM, TEM and Raman spectroscopy. Thermal analysis of the nanocomposites by TGA and DSC showed an enhanced thermal stability when comparing the nanocomposites with neat PVC. The modulus of the MWCNTs / PVC nanocomposites increased whilst there was a reduction in their tensile strength, indicating a decrease in polymer toughness.
|
17 |
Vinyl chloride biodegradation by methane-oxidizing bacteria and ethene-oxidizing bacteria in the presence of methane and etheneLee, Meng-Chen 01 December 2012 (has links)
No description available.
|
18 |
Assessment of methanotroph presence and activity in dilute vinyl chloride contaminated groundwaterDobson, Meredith Lynn 01 May 2011 (has links)
The extensive use of tetrachloroethene (PCE) and trichloroethene (TCE) as cleaning solvents has resulted in widespread contamination of groundwater systems with vinyl chloride (VC). VC, a known human carcinogen, is primarily formed in groundwater via incomplete anaerobic reductive dechlorination of PCE and TCE. Aerobic, methane-degrading bacteria (methanotrophs), which are capable of VC cometabolism while growing on methane, could be important in natural attenuation of VC plumes that escape anaerobic treatment. Real-time PCR (qPCR) represents an innovative approach for detecting and quantifying the presence and activity of these VC-degrading microbes. Immediate applications of this technique include use in a laboratory setting to help elucidate the potential bacterial-substrate interactions occurring in the subsurface environments at these contaminated sites; interactions that could ultimately affect the role of methanotrophs in VC degradation. This technique could also provide lines of evidence for natural attenuation of VC, thus support existing anaerobic bioremediation technologies that generate VC as a metabolic intermediate.
In this work, we evaluated several PCR primer sets from the literature for use in methanotroph qPCR assays of groundwater samples. PCR primers targeting two functional genes involved in VC cometabolism, pmoA (sub-unit of particulate methane monooxygenase (pMMO)) and mmoX (sub-unit of soluble MMO (sMMO)), as well as 16S rRNA gene primers that targeted Bacteria, and Type I and Type II methanotrophs were tested. These assays were made quantitative by constructing standard curves with DNA from Methylococcus capsulatus (Type I) and Methylocystis sp. strain Rockwell (Type II). Primer sets were evaluated by comparing gene abundance estimated against known amounts of Type I and Type II methanotroph DNA. After primer validation, an effort to substantiate this methanotroph qPCR method was made by attempting to investigate methanotroph populations in groundwater samples from VC-contaminated sites. Some samples studied were also subjected to 16S rRNA gene pyrosequencing, allowing for relative abundance comparisons with qPCR analyses. Following our primer assessment experiments, effective primer sets were used to estimate the presence of methanotrophs at environmental sites in Soldotna, Alaska; Naval Air Station Oceana, Virginia Beach, Virginia; and Carver, Massachusetts. Results showed that methanotrophs were present in nearly all wells sampled from all environmental sites. Estimations of methanotroph relative abundance in environmental samples were determined by comparing the Type I and Type II primer estimates to those of the 16S universal primers. Methanotrophs in these groundwater samples ranged from 0.2% to 6.6% of the total bacterial population. Pyrosequencing analysis of the same samples showed methanotroph relative abundances that ranged from 1.7% to 54%. In groundwater samples where both DNA and RNA was extracted, the quantities of functional gene transcripts per gene copy was compared, revealing that the transcripts/gene ratio for both pmoA and mmoX was less than one, implying relatively low methanotroph activity. Analysis of mmoX environmental sample dissociation curves revealed a double peak, indicating possible non-specific PCR products. Our data suggests that most of the qPCR primer sets used in the environmental samples adequately detect methanotrophs, though the mmoX primers need to be further validated. These primer sets will be useful for supporting VC bioremediation strategies by providing a rapid, convincing, and cost effective alternative the enrichment culture technique currently employed. Comparison of qPCR and pyrosequencing analysis revealed biases in either one, or both techniques. Finally, our preliminary transcripts/gene data suggests that the methanotrophs at the Carver site are not actively expressing pMMO and sMMO genes above basal levels.
|
19 |
Aerobic degradation of chlorinated ethenes by Mycobacterium strain JS60 in the presence of organic acidsBlatchford, Christina 22 September 2005 (has links)
This study evaluated the potential of the aerobic Mycobacterium strain JS6O to
grow on a variety of organic acid substrates, and the possible effects an organic acid
would have on the degradation rate of vinyl chloride (VC). A series of batch growth
tests were designed to determine the time it took to consume the substrate and the overall
increase in biomass. Strain JS6O was found capable of growth on acetate, propionate,
and butyrate, but could not grow on formate or lactate. Acetate was chosen for further
study because strain JS6O consumed acetate the most rapidly of all the organic acids
tested, and acetate is a common product of fermentation reactions in the subsurface.
Strain JS6O was confirmed to grow on both ethylene and vinyl chloride as the sole
carbon and energy source. Comparatively, strain JS6O's rate of growth on VC is much
slower than that of ethylene. With acetate as an augmenting growth substrate, ethylene
and VC utilization rates increased by 30% and 48%, respectively. Since acetate and VC
are often found together in contaminated chlorinated ethene plumes, this makes a strong
case for natural attenuation of VC by strain JS6O.
A series of kinetic tests were implemented to determine the K[subscript s] and k[subscript max] of strain
JS6O for ethylene, VC, and c-DCE. The K[subscript s] and k[subscript max] for ethylene determined through
NLSR methods was similar to the values published in Coleman et al. (2002), supporting
the maintenance of a pure culture throughout the experimental work.
When strain JS6O was exposed to the isomers of DCE (trans-1,2-dichloroethylene
(t-DCE), cis-1,2-dichloroethylene (c-DCE), and 1,1-dichloroethylene (1,1-DCE)) the
cells were unable to grow on these compounds. However, when growing on acetate,
strain JS6O cometabolized c-DCE and t-DCE, but not 1,1-DCE, with c-DCE transformed
more rapidly than t-DCE. Transformation of c-DCE was also observed with growth on
VC and ethylene. The presence of c-DCE was shown to partially inhibit VC degradation,
but had no effect on ethylene degradation. The cometabolism results with acetate further
indicate that strain JS6O is a good candidate for natural attenuation of multiple
chlorinated ethenes in the subsurface. / Graduation date: 2006
|
20 |
Invasive Character of Malignant Endothelial Cells in Vinyl-Chloride-Induced Liver AngiosarcomaINAGAKI, TAKAO, MANO, HIROSHI, FUKUMURA, AKIRA, AOI, TSUNETO, SAKAMOTO, NOBUO, HAYASHI, HISAO 03 1900 (has links)
No description available.
|
Page generated in 0.063 seconds