• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 34
  • 34
  • 17
  • 11
  • 10
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Non-covalent Intermolecular Interactions in Polymer Design: Segmented Copolymers to Non-viral Gene Delivery Vectors

Buckwalter, Daniel James 01 June 2013 (has links)
Non-covalent intermolecular interactions play a large role in determining the properties of a given system, from segmented copolymers to interactions of functionalized polymers with non-viral nucleic acids delivery vehicles. The ability to control the intermolecular interactions of a given system allow for tailoring of that system to yield a desired outcome, whether it is a copolymers mechanical properties or the colloidal stability of a pDNA-delivery vector complex. Each chemical system relies on one or more types of intermolecular interaction such as hydrogen bonding, cooperative À-À stacking, electrostatic interactions, van der waals forces, metal-ligand coordination, or hydrophobic/solvophobic effects. The following research describes the tailoring of specific intermolecular interactions aimed at altering the physical properties of segmented copolymers and non-viral gene delivery vectors. Amide containing segmented copolymers relies heavily on hydrogen bonding intermolecular interactions for physical crosslinking to impart the necessary microphase separated morphology responsible for a copolymers physical properties. Amide containing hard segments are composed of various chemical structures from crystalline aramids to amorphous alkyl amides with each structure possessing unique intermolecular interactions. Variations to either of the copolymer segments alters the copolymers physical properties allowing for tuning of a copolymers properties for a particular application. The synthetic strategies, structure-property relationships, and physical properties of amide containing segmented copolymers are thoroughly reported in the literature. Each class of segmented copolymer that contain amide hydrogen bonding groups exhibits a wide range of tunable properties desirable for many applications. The segmented copolymers discussed here include poly(ether-block-amide)s, poly(ether ester amide)s, poly(ester amide)s, poly(oxamide)s, PDMS polyamides, and polyamides containing urethane, urea, or imide groups. The structure-property relationships (SPR) of poly(oxamide) segmented copolymers is not well understood with only one report currently found in literature. The effects of oxamide spacing in the hard segment and molecular weight of the soft segments in PDMS poly(oxamide) segmented copolymers demonstrated the changes in physical properties associated with minor structural variations. The optically clear PDMS poly(oxamide) copolymers possessed good mechanical properties after bulk polymerization of ethyl oxalate terminated PDMS oligomers with alkyl diamines or varied length. FTIR spectroscopy experiments revealed an ordered hydrogen bonding carbonyl stretching band for each copolymer and as the spacing between oxamide groups increased, the temperature at which the hard segment order was disrupted decreased. The increased spacing between oxamide groups also led to a decrease in the flow temperature observed with dynamic mechanical analysis. Copolymer tensile properties decrease with increased oxamide spacing as well as the hysteresis. The structure-property investigations of PDMS poly(oxamide) segmented copolymers showed that the shortest oxamide spacing resulted in materials with optimal mechanical properties. A new class of non-chain extended segmented copolymers that contained both urea and oxamide hydrogen bonding groups in the hard segment were synthesized. PDMS poly(urea oxamide) (PDMS-UOx) copolymers displayed thermoplastic elastomer behavior with enhanced physical properties compared to PDMS polyurea (PDMS-U) controls. Synthesis of a difunctional oxamic hydrazide terminated PDMS oligomer through a two-step end capping procedure with diethyl oxalate and hydrazine proved highly efficient. Solution polymerization of the oxamic hydrazide PDMS oligomers with HMDI afforded the desired PDMS-UOx segmented copolymer, which yielded optically clear, tough elastomeric films. Dynamic mechanical analysis showed a large temperature insensitive rubbery plateau that extended up to 186 ÚC for PDMS-UOx copolymers and demonstrated increased rubbery plateau ranges of up to 120 ÚC when compared to the respective PDMS-U control. The increase in thermomechanical properties with the presence of oxamide groups in the hard segment was due to the increased hydrogen bonding, which resulted in a higher degree of microphase separation. DMA, SAXS, and AFM confirmed better phase separation of the PDMS-UOx copolymers compared to PDMS-U controls and DSC and WAXD verified the amorphous character of PDMS-UOx. Oxamide incorporation showed a profound effect on the physical properties of PDMS-UOx copolymers compared to the controls and demonstrated promise for potential commercial applications. Two novel segmented copolymers based on a poly(propylene glycol) (PPG) that contained two or three oxamide groups in the hard segment were synthesized. Synthesis of non-chain extended PPG poly(trioxamide) (PPG-TriOx) and PPG poly(urea oxamide) (PPG-UOx) segmented copolymers utilized the two-step end-capping procedure with diethyl oxalate and hydrazine then subsequent polymerization with oxalyl chloride or HMDI, respectively. The physical properties of the PPG-TriOx and PPG-UOx copolymers were compared to those of PPG poly(urea) (PPG-U) and poly(oxamide) (PPG-Ox) copolymers. FTIR studies suggested the presence of an ordered hydrogen bonded hard segment for PGG-TriOx and PPG-Ox copolymers with PPG-TriOx possessing a lower energy ordered hydrogen bonding structure. PPG-UOx copolymers exhibited a larger rubbery plateau and higher moduli compared to PPG-U copolymers and also a dramatic increase in the tensile properties with the increased hydrogen bonding. The described copolymers provided a good example of the utility of this new step-growth polymerization chemistry for producing segmented copolymers with strong hydrogen bonding capabilities. Non-viral nucleic acid delivery has become a hot field in the past 15 years due to increased safety, compared to viral vectors, and ability to synthetically alter the material properties. Altering a synthetic non-viral delivery vector allows for custom tailoring of a delivery vector for various therapeutic applications depending on the target disease. The types of non-viral delivery vectors are diverse, however the lack of understanding of the endocytic mechanisms, endosomal escape, and nucleic acid trafficking is not well understood. This lack of understanding into these complex processes limits the effective design of non-viral nucleic acid delivery vehicles to take advantage of the cellular machinery, as in the case of viral vectors. Mechanisms for cellular internalization of polymer-nucleic acid complexes are important for the future design of nucleic acid delivery vehicles. It is well known that the mammalian cell surface is covered with glycosaminoglycans (GAG) that carry a negative charge. In an effort to probe the effect of GAG charge density on the affinity of cationic poly(glcoamidoamine) (PGAA)-pDNA complexes, quartz crystal microbalance was employed to measure the mass of GAGs that associated with a polyplex monolayer. Affinity of six different GAGs that varied in the charge density were measured for polyplexes formed with poly(galactaramidopentaethylenetetramine) (G4) cationic polymers and pDNA. Results showed that the affinity of GAGs for G4 polyplexes was not completely dependent on the electrostatic interactions indicating that other factors contribute to the GAG-polyplex interactions. The results provided some insight into the interactions of polyplexes with cell surface GAGs and the role they play in cellular internalization. Two adamantane terminated polymers were investigated to study the non-covalent inclusion complexation with click cluster non-viral nucleic acid delivery vehicles for passive targeting of the click cluster-pDNA complexes (polyplex). Incorporation of adamantyl terminated poly(ethylene glycol) (Ad-PEG) and poly(2-deoxy-2-methacrylamido glucopyranose) (Ad-pMAG) polymers into the polyplex formulation revealed increased colloidal stability under physiological salt concentrations. Ad-pMAG polyplexes resulted in lower cellular uptake for HeLa cells and not two glioblastoma cell lines indicating the pMAG corona imparts some cell line specificity to the polyplexes. Ad-pMAG provided favorable biological properties when incorporated into the polyplexes as well as increased polyplex physical properties. / Ph. D.
12

Gene delivery strategies for enhancing bone regeneration

Khorsand Sourkohi, Behnoush 01 August 2018 (has links)
There exists a dire need for improved therapeutics to achieve predictable and effective bone regeneration. Non-viral gene therapy is a safe method that can efficiently transfect target cells, therefore is a promising approach to overcoming the drawbacks of protein delivery of growth factors. The goal of this study was to employ cost-effective biomaterials to deliver genetic materials (DNA or RNA) in a controlled manner in order to address the high cost issues, safety concerns, and lower transfection efficiencies that exist with protein and gene therapeutic approaches. To achieve our goal, we set several aims: 1) To assess the bone regeneration capacity of polyethylenimine (PEI)-chemically modified ribonucleic acid (cmRNA) (encoding bone morphogenetic protein-2 (BMP-2)) activated matrices, compared to PEI-plasmid DNA (BMP-2)-activated matrices. 2) To explore the osteogenic potential of cmRNA-encoding BMP-9, in comparison to cmRNA-encoding BMP-2. 3) To use collagen membranes as integral components of a guided bone regeneration protocol and to enhance the bioactivity of collagen membranes by incorporating plasmid DNA (pDNA) or cmRNA encoding bone morphogenetic protein-9 (BMP-9). 4) To test whether the delivery of pDNA encoding BMP-2 (pBMP-2) and fibroblast growth factor-2 (pFGF-2) together can synergistically promote bone repair in a leporine model of diabetes mellitus, a condition that is known to be detrimental to union. 5) To investigated whether there is a synergistic effect on bone regeneration following delivery of pBMP-2 and pFGF-2, insulin and/or vitamin D. These investigations together provided new insights regarding the appropriate treatment methods for patients with fractures. Here we develop and test a non-viral gene delivery system for bone regeneration in challenging animal models utilizing a scaffold carrying PEI-nucleic acid complexes. We utilized three kinds of pDNA encoding either BMP-2, BMP-9 or FGF-2 as well as two kinds of cmRNA encoding either BMP-2 or BMP-9 formulated into PEI complexes. The fabricated nanoplexes were assessed for their size, charge, in vitro cytotoxicity, and capacity to transfect human bone marrow stromal cells (BMSCs). The in vivo functional potency of different nanoplexes embedded in scaffolds was evaluated using a calvarial bone defect model in rats, diaphyseal long bone radial defects in a diabetic rabbit model and intramuscular implantation in a diabetic rat. The results indicate that our non-viral gene delivery system induced migration and differentiation of resident cells to enhance bone regeneration. Together these findings suggest that scaffolds loaded with non-viral vectors harboring cmRNA or pDNA encoding osteogenic proteins may be a powerful tool for stimulating bone regeneration with significant potential for clinical translation.
13

Sheep retroviral envelope glycoproteins : mechanisms of oncogenesis and incorporation into HIV-1 lentiviral vectors /

Liu, Shan-Lu. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 124-147).
14

Molecular Dynamics Simulations of Polyethylenimine Mediated Nucleic Acid Complexation with Implications for Non-viral Gene Delivery

Sun, Chongbo Unknown Date
No description available.
15

ARID3B: A novel regulator of the Kaposi's sarcoma-associated herpesvirus lytic cycle

Wood, J.J., Boyne, James R., Paulus, C., Jackson, B.R., Nevels, M.M., Whitehouse, A., Hughes, D.J. 10 August 2016 (has links)
Yes / KSHV is the causative agent of commonly fatal malignancies of immuno-compromised individuals, including primary effusion lymphoma (PEL) and Kaposi's sarcoma (KS). A hallmark of all herpesviruses is their biphasic lifecycle – viral latency and the productive lytic cycle, and it is well established that reactivation of the KSHV lytic cycle is associated with KS pathogenesis. Therefore, a thorough appreciation of the mechanisms that govern reactivation is required to better understand disease progression. The viral protein, replication and transcription activator (RTA), is the KSHV lytic switch protein due to its ability to drive the expression of various lytic genes, leading to reactivation of the entire lytic cycle. While the mechanisms for activating lytic gene expression have received much attention, how RTA impacts on cellular function is less well understood. To address this, we developed a cell line with doxycycline-inducible RTA expression and applied SILAC-based quantitative proteomics. Using this methodology, we have identified a novel cellular protein (AT-rich interacting domain containing 3B, ARID3B) whose expression was enhanced by RTA and that relocalised to replication compartments upon lytic reactivation. We also show that siRNA knockdown or overexpression of ARID3B led to an enhancement or inhibition of lytic reactivation, respectively. Furthermore, DNA affinity and chromatin immunoprecipitation assays demonstrated that ARID3B specifically interacts with A/T-rich elements in the KSHV origin of lytic replication (oriLyt), and this was dependent on lytic cycle reactivation. Therefore, we have identified a novel cellular protein whose expression is enhanced by KSHV RTA with the ability to inhibit KSHV reactivation.
16

Impact of ATP-dependent RNA Helicase DDX3X on Herpes Simplex Type 1 (HSV-1) Replication

Khadivjam, Bita 08 1900 (has links)
Le criblage par siRNA de 49 protéines de l'hôte qui sont incorporées dans les particules matures du virus herpès simplex de type 1 (VHS-1) a révélé l'importance d'au moins 15 d’entre elle pour infectivité du virus (Stegen, C et al. 2013). Parmi celle-ci figure la protéine humaine DDX3X, qui est une ARN hélicase ATP-dépendante. Cette protéine multifonctionnelle participe à différents stages de l'expression génique, tels que la transcription, la maturation et le transport d'ARNm ainsi que la traduction. DDX3X est impliquée dans la réplication de plusieurs virus tels que le Virus de l’immunodéficience humaine de type 1 (VIH-1), l'hépatite B (VHB), le virus de la vaccine (VACV) et le virus de l'hépatite C (VHC). Le rôle exact de DDX3X dans le cycle de réplication du VHS-1 est toutefois inconnu. Ce mémoire consiste en l’étude détaillée de l'interaction de DDX3X avec le virus. De manière surprenante, tant l’inhibition que la surexpression de DDX3X réduit de manière significative l'infectivité du VHS-1. Fait intéressant, lorsque nous avons restauré la déplétion de DDX3X par une construction résistante aux ARNi utilisés, le virus pouvait de nouveau infecter les cellules efficacement, indiquant que le virus est sensible aux quantités de cette protéine de son hôte. Nos résultats indiquent de plus que le virus modifie la localisation de DDX3X et cause son agrégation tôt dès les premiers temps de l'infection. Cependant, le virus ne modifie pas les niveaux cellulaires de DDX3X dans deux des trois lignées cellulaires examinées. Nous avons également pu établir que cette protéine n'a pas d'effet sur l'entrée du VHS-1, suggérant qu’elle agit à un stade ultérieure de l’infection. En examinant cette relation plus en détail, nos résultats ont démontré que l’inhibition ou la surexpression de DDX3X inhibent toutes deux la production de nouvelles particules virales en réduisant l'expression des diverses classes cinétiques des protéines virales et ce au niveau de leur transcription. Malgré le rôle connu DDX3X dans la stimulation de la réponse immunitaire innée et la production d’interférons de type I, l’impact de DDX3X sur la réplication du VHS-1 est ici indépendante de cette fonction. Ces travaux démontrent donc une nouvelle voie d’action de DDX3X sur les virus en agissant directement sur la transcription de gènes viraux et la réplication du génome d’un virus à ADN. En comprenant mieux cette interactions hôtepathogène, il est maintenant envisageable de concevoir des nouvelles approches thérapeutiques contre ce virus. / siRNA screening of 49 host proteins that are known to be incorporated in the mature virions of herpes simplex virus type 1 (HSV-1) revealed the importance of at least 15 cellular proteins for viral infectivity (Stegen, C et al. 2013). Among these, was the human protein DDX3X, a DEAD-box ATP-dependent RNA helicase. This multifunctional protein participates in different stages of gene expression such as mRNA transcription, maturation, mRNA export and translation. DDX3X has been shown to be involved in the replication of several viruses such as human immunodeficiency virus type 1 (HIV-1), hepatitis B virus (HBV) vaccinia virus (VACV) and hepatitis C virus (HCV). The exact role of DDX3X in HSV-1 replication cycle is not known. Here we sought to find the detailed interaction between DDX3X with HSV-1. Surprisingly, the down-regulation as well as overexpression of DDX3X, significantly reduced the infectivity of HSV-1, indicating that the virus is sensitive to the precise levels of DDX3X. Accordingly, when we rescued DDX3X back to its normal cellular levels by sequential transfection of DDX3X siRNA and siRNA resistant DDX3X plasmid, the virus was able to infect cells efficiently compare to wild-type conditions. Furthermore, the virus changes the localization of DDX3X and causes its aggregation at early times in the infection. However, the virus does not change the cellular levels of DDX3X in at least two of three different cell lines tested. Using a luciferase assay we were able to establish that this protein has no effect on the entry of HSV-1. In fact, depleting or overexpressing DDX3X impaired the production on newly assembled viral particles by blocking the expression of all classes of viral proteins at the transcription level. Despite the known role of DDX3X in the stimulation of innate immune response and interferon type I production, DDX3X appears to act on HSV-1 replication independently of this pathway. This highlights a novel route of action of DDX3X by acting at the transcription level and the consequent genome replication of a DNA virus. By better understanding such pathogen interactions, it might now be possible to design novel therapeutic approaches.
17

Klinische Studie und experimentelle Untersuchungen zur nicht-viralen Gentherapie solider Tumoren

Kobelt, Dennis 04 October 2012 (has links)
Krebs gehört zu den häufigsten Todesursachen weltweit. Ein großer Hoffnungsträger für die Behandlung maligner Tumore ist die Gentherapie. Die nicht-virale Gentherapie gilt als sicherere Alternative zur viralen Gentherapie. Für den nicht viralen Gentransfer sind sowohl Vektor als auch Gentransfertechnologie von entscheidender Bedeutung. Im Rahmen dieser Arbeit wurde die Gentransfereffizienz und Sicherheit der Jet-Injektion in einer klinischen Phase I Gentransferstudie mit Hilfe des Swiss-Injektors untersucht. Es konnte gezeigt werden, dass diese Technologie sicher klinisch angewendet werden kann, dass jedoch die Sicherheit der Vektoren und vor allem die Gentransfereffizienz weiter optimiert werden müssen. Ausgehend von diesen Ergebnissen wurden optimierte nicht-virale Vektoren (Minicircle, MIDGE) miteinander und mit ihren parentalen Plasmiden verglichen. Mit Hilfe des MIDGE Vektors konnte die höchste Transgenexpression aufgrund einer erhöhten Transkription erzielt werden. In Vorbereitung der klinischen Anwendung des MIDGE-Vektors wurde die Kombination von hTNF-alpha Gentransfer und Vindesin Chemotherapie untersucht. Auch hier zeigte der MIDGE-Vektor eine erhöhte in vitro Genexpression, die in vitro zu einer erhöhten Zytotoxizität von Vindesin aufgrund einer verstärkten Aktivierung der Apoptose führte. Auch in vivo konnte die verbesserte hTNF-alpha-Genexpression des MIDGE-Vektors nach Jet-Injektion gezeigt werden. Dies führte in Kombination mit Vindesin zu einem signifikant reduzierten Tumorwachstum. Durch Analyse der systemischen Vektorverteilung im Blut und in den Organen sowie in einer präklinischen toxikologischen Untersuchung konnte die sichere Anwendung des MIDGE-Vektors bestätigt werden. Abschließend wurden weitere Anwendungsmöglichkeiten des MIDGE-Vektors für die stabile Genexpression und für die Verwendung in kombinierten Gentransferprotokollen untersucht. / Cancer is one leading causes of death worldwide. Gene therapy belongs to the promising options for treatment of malignant tumors. The non-viral gene therapy is known as safer alternative to the viral gene therapy. For non-viral gene transfer the vector and the transfer technology are of crucial importance. As part of this work a clinical trial was performed to assess efficiency and safety of the non-viral jet-injection. It was shown, that this technology can be used safely in a clinical setting. As a result of this clinical trial we concluded, that vector safety and especially efficiency need further improvements. Based on this optimized non-viral vectors (minicircle, MIDGE) were compared with each other and their respective parental plasmids. The MIDGE vector showed the highest transgene expression due to increased transcription. In preparation of a clinical trial the combined treatment of hTNF-alpha gene transfer and Vindesine chemotherapy was analyzed. Again, the MIDGE vector showed the highest transgene expression. This expression led to an increased cytotoxicity of Vindesine in vitro due to an elevated apoptosis signaling. Furthermore, these results could be assigned to an in vivo model. The increased hTNF-alpha expression after MIDGE vector jet-injection in combination with Vindesine led to a significant decrease in tumor growth. Detailed analysis of systemic vector distribution in the blood and organs as well as the preclinical toxicity evaluation showed the safety of the non-viral MIDGE vector. Initial experiments were performed to show further options for stable gene expression and combined gene transfer protocols using the MIDGE vector.
18

In vitro- und in vivo Untersuchungen für eine nicht-virale und Therapie-regulierbare Tumorgentherapie

Walther, Wolfgang 28 April 2004 (has links)
Die Gentherapie hat in den letzten Jahren wesentliche Entwicklungen im Vektordesign, der kontrollierte Expression sowie der Sicherheit ihrer Anwendung durchgemacht. Die Erkenntnis, dass die Tumorgentherapie allein nur in begrenztem Maße zum erhofften therapeutischen Benefit für den Patienten beitragen kann, führte zum Konzept der lokalen Gentherapie als Teil anderer, etablierter Tumortherapien. In diesem Zusammenhang wird die Gentherapie als eine moderne Option zur Steigerung der Effizienz von Chemotherapie, Strahlentherapie oder Hyperthermie verstanden. Zum Erreichen dieses Zieles ist die Etablierung Therapie-regulierbarer Vektorsysteme von besonderer Attraktivität. Im Rahmen der Strategie des lokalen Transfers therapeutischer Gene bietet inzwischen die Anwendung nicht-viraler Transfersysteme, wie z.B. in vivo-Elektrotransfer, Gene-Gun oder Jet-Injection eine klinisch applikable Technologie. Die Etablierung einer effizienten, auf der Jet-Injection basierenden nicht-viralen Transfertechnologie und die Analyse ihres Potentials für eine klinische Anwendung in einem multimodalen Therapiekonzept war ein wesentliches Ziel der Arbeit. Es wurde gezeigt, dass die Jet-Injection in tierexperimentellen Tumormodellen zur effizienten Expression der Transgene führt, dass sowohl Eindringtiefen, als auch Verteilung der Jet-Injection optimal für einen effizienten Gentransfer sind und die Höhe der Genexpression mit etablierten Gentransfer-Technologien, wie z.B. der in vivo-Lipofektion, vergleichbar ist. Basierend auf der Strategie des Einsatzes der Gentherapie in Kombination mit anderen Therapien, bestand ein weiteres Ziel der Arbeit in der Charakterisierung und Anwendung konditioneller Vektorsysteme, mit denen die Expression therapeutischer Gene durch Chemotherapie oder Hyperthermie kontrollierbar ist. Derartige Vektoren, in denen der humane Multidrug Resistenzgen 1- (mdr1) Promotor genutzt wurde, exprimierten vor allem Zytokingene, die die therapeutische Effizienz von Zytostatika oder der Hyperthermie verbessern. Die Zytostatika-und auch Hitze-Induzierbarkeit der mdr1-Promotor gesteuerten Genexpression konnte in verschiedenen Tumormodellen in vitro und in vivo erfolgreich demonstriert werden Diese Untersuchungen zeigten, dass eine Zytostatika-induzierte Gentherapie zu einer besseren Tumortherapie beiträgt. Die Kombinations-Experimente der konditionellen Gentherapie im Kontext einer Hyperthermie geben erste Hinweise, dass auch hier die therapeutische Effektivität in vitro und in vivo gesteigert werden kann. Im Rahmen des Konzepts der kombinierten Gen- und Chemotherapie von Tumoren ist in der Arbeit vor allem auf das chemosensitivierende Potential von Zytokinen gesetzt worden. Besonders für TNF-a, IL-2 sowie IFN-g konnte gezeigt werden, dass diese Zytokine zu einer Modulation der Expression MDR-assoziierter Gene, wie dem mdr1, MVP/LRP und auch MRP1 in der Lage sind und dadurch zur Chemosensitivierung in verschiedenen Tumormodellen führt. Diese Befunde bildeten eine wichtige Rationale für den Einsatz von Zytokingenen im Rahmen der Tumorgentherapie zur Überwindung der MDR. Gentransferexperimente mit TNF-a- und IL-2-exprimierenden Vektoren konnten analog zur Applikation rekombinanter Zytokine die Modulation der Gene mdr1 und MVP/LRP zeigen, die mit der Erhöhung der Sensitivität gegenüber Zytostatika wie Vincristin oder Adriamycin assoziiert ist. / Gene therapy has made great achievements in vector design, controlled gene expression and in safety. The fact, that gene therapy as single therapy has only limited potential for the benefit in the therapy for cancer patients, has led to the concept of local gene therapy as part of other, established therapies. In this context, gene therapy serves as a modern option to improve the efficiency of chemotherapy, radiotherapy or hyperthermia. To achieve this goal, the establishment of therapy-regulatable vectors is of particular attractiveness. For the concept of local transfer of therapeutic genes non-viral transfer systems, such as in vivo electrotransfer, gene gun or jet-injection represent clinically applicable transfer technologies. One major issue of this work was the establishment of an efficient, jet-injection based non-viral transfer technology and the analysis of its potential for clinical application in a concept of multimodal therapy. It has been shown in vivo, that efficient transgene expression can be achieved by jet-injection, that penetration and distribution of the transgene are optimal for an efficient gene transfer and that the level of gene expression is comparable to established gene transfer technologies, sch as in vivo lipofection. Based on the strategy of combination of gene therapy with other therapies, another goal of this work aimed at the characterization and utilization of conditional vector systems, by which expression of therapeutic genes is controllable by chemotherapy or hyperthermia. By such vectors, in which the human multidrug resistance gene 1 (mdr1) promoter was employed, cytokine genes were expressed, which are capable to improve the therapeutic efficacy of cytostatic drugs or of hyperthermia. The drug- and heat-inducibility of mdr1 promoter-driven gene expression has successfully been demonstrated in in vitro and n vivo tumor models. The studies have also shown, that drug-induced gene therapy leads to improved tumor treatment. Combination experiments of conditional gene therapy in the context with hyperthermia give first indication of an increased therapeutic efficiency in vitro and in vivo. For the concept of combined gene- and chemotherapy the chemosensitizing potential of cytokines was exploited. It has been shown, particularly for TNF-a, IL-2 and IFN-g, that these cytokines are capable to modulate the expression of MDR-associated genes, such as mdr1, MVP/LRP or MRP1 leading to chemosensitization in different tumor models. These observations represent an important rationale for the use of cytokine genes in gene therapy for MDR-overcoming. Gene transfer experiments with TNF- or IL-2 expressing vectors showed the modulation of mdr1 or MVP/LRP expression, associated with increased sensitivity towards cytostatic drugs, such as vincristine or adriamycin.
19

THE DEVELOPMENT OF MICROFLUIDIC DEVICES FOR THE PRODUCTION OF SAFE AND EFFECTIVE NON-VIRAL GENE DELIVERY VECTORS

Absher, Jason Matthew 01 January 2018 (has links)
Including inherited genetic diseases, like lipoprotein lipase deficiency, and acquired diseases, such as cancer and HIV, gene therapy has the potential to treat or cure afflicted people by driving an affected cell to produce a therapeutic protein. Using primarily viral vectors, gene therapies are involved in a number of ongoing clinical trials and have already been approved by multiple international regulatory drug administrations for several diseases. However, viral vectors suffer from serious disadvantages including poor transduction of many cell types, immunogenicity, direct tissue toxicity and lack of targetability. Non-viral polymeric gene delivery vectors (polyplexes) provide an alternative solution but are limited by poor transfection efficiency and cytotoxicity. Microfluidic (MF) nano-precipitation is an emerging field in which researchers seek to tune the physicochemical properties of nanoparticles by controlling the flow regime during synthesis. Using this approach, several groups have demonstrated the successful production of enhanced polymeric gene delivery vectors. It has been shown that polyplexes created in the diffusive flow environment have a higher transfection efficiency and lower cytotoxicity. Other groups have demonstrated that charge-stabilizing polyplexes by sequentially adding polymers of alternating charges improves transfection efficiency and serum stability, also addressing major challenges to the clinical implementation of non-viral gene delivery vectors. To advance non-viral gene delivery towards clinical relevance, we have developed a microfluidic platform (MS) that produces conventional polyplexes with increased transfection efficiency and decreased toxicity and then extended this platform for the production of ternary polyplexes. This work involves first designing microfluidic devices using computational fluid dynamics (CFD), fabricating the devices, and validating the devices using fluorescence flow characterization and absorbance measurements of the resulting products. With an integrated separation mechanism, excess polyethylenimine (PEI) is removed from the outer regions of the stream leaving purified polyplexes that can go on to be used directly in transfections or be charge stabilized by addition of polyanions such as polyglutamic acid (PGA) for the creation of ternary polyplexes. Following the design portion of the research, the device was used to produce binary particle characterization was carried out and particle sizes, polydispersity and zeta potential of both conventional and MS polyplexes was compared. MS-produced polyplexes exhibited up to a 75% reduction in particle size compared to BM-produced polyplexes, while exhibiting little difference in zeta potential and polydispersity. A variety of standard biological assays were carried out to test the effects of the vectors on a variety of cell lines – and in this case the MS polyplexes proved to be both less toxic and have higher transfection efficiency in most cell lines. HeLa cells demonstrated the highest increase in transgene expression with a 150-fold increase when comparing to conventional bulk mixed polyplexes at the optimum formulation. A similar set of experiments were carried out with ternary polyplexes produced by the separation device. In this case it was shown that there were statistically significant increases in transfection efficiency for the MS-produced ternary polyplexes compared to BM-produced poyplexes, with a 23-fold increase in transfection activity at the optimum PEI/DNA ratio in MDAMB-231 cells. These MS-produced ternary polyplexes exhibited higher cell viability in many instances, a result that may be explained but the reduction in both free polymer and ghost particles.
20

Development of Amino acid-Substituted Gemini Surfactant-Based Non-invasive Non-Viral Gene Delivery Systems

2013 August 1900 (has links)
Gemini surfactants are versatile gene delivery agents because of their ability to bind and compact DNA and their low cellular toxicity. The aim of my dissertation work was to develop non-invasive mucosal formulations of novel amino acid-substituted gemini surfactants with the general chemical formula C12H25(CH3)2N+-(CH2)3-N(AA)-(CH2)3-N+(CH3)2-C12H25 (AA= glycine, lysine, glycyl-lysine, lysyl-lysine). These compounds were formulated with a model plasmid DNA, encoding for interferon-γ and green fluorescent protein, in the presence of helper lipid, 1,2 dioleyl-sn-glycero-phosphatidyl-ethanolamine. Formulations were assessed in Sf 1 Ep epithelial cells. Among the novel compounds, plasmid/gemini/lipid (P/G/L) nanoparticles formulated using glycine- and glycyl-lysine substituted gemini surfactants achieved significantly higher gene expression than the parent unsubstituted compound. The key physicochemical properties, e.g. size, surface charge, DNA binding, and toxicity of P/G/L complexes were correlated with transfection efficiency. The presence of amino-acid substitution did not interfere with DNA compaction and contributed to an overall low toxicity of all P/G/L complexes, comparable to the parent gemini surfactant. A cellular uptake mechanistic study revealed that both clathrin- and caveolae-mediated uptake were major uptake routes for P/G/L nanoparticles. However, amino acid substitution in the gemini surfactant imparted high buffering capacity, pH-dependent increase in particle size, and balanced DNA binding properties. These properties may enhance endosomal escape of P/12-7NGK-12/L resulting in higher gene expression. Finally, the P/G/L complexes were incorporated into an in-situ gelling dispersion containing a thermosensitive polymer, poloxamer 407, and a permeation enhancer, diethylene glycol monoethyl ether (DEGEE). A 16% w/v poloxamer concentration produced a dispersion that gelled at body temperature and exhibited sufficient yield value to prevent formulation leakage from the vaginal cavity. The formulations were prepared with a model plasmid, encoding for red fluorescent protein, and administered topically to rabbit vagina. In agreement with our in vitro results, confocal microscopy revealed that glycyl-lysine substituted gemini surfactant exhibited higher gene expression compared to the parent unsubstituted gemini surfactant. This provided proof-of-concept for use of amino acid-substituted gemini surfactant in non-invasive mucosal (vaginal) gene delivery systems with potential therapeutic applications. These formulations will be developed with therapeutically relevant genes to assess their potential as genetic vaccines. In addition, new gemini surfactants will be developed by grafting other amino acids via glycine linkage to retain conformation flexibility and enhance endosomal escape of DNA complexes for higher transfection efficiency.

Page generated in 0.0696 seconds