Spelling suggestions: "subject:"virada""
1 |
The diffeomorphism fieldKilic, Delalcan 01 May 2018 (has links)
The diffeomorphism field is introduced to the physics literature in [1] where it arises as a background field coupled to Polyakov’s quantum gravity in two dimensions, where Einstein’s gravity is trivial. Moreover, it is seen in many ways as the gravitational analog of the Yang-Mills field. This raises the question of whether the diffeomorphism field exists in higher dimensions, playing an essential role in gravity either by supplementing Einstein’s theory or by modifying it.
With this motivation, several distinct theories governing the dynamics of the diffeomorphism field have been constructed and developed by mimicking the construction of the Yang-Mills theory from the Kac-Moody algebra. This analogy, however, is not perfect and there are many subtleties and difficulties encountered.
This thesis constitutes a further development. The previously proposed theories are carefully examined; certain subtleties and problems in them have been discovered and made apparent. Some of these problems have been solved, and for others possible routes to follow have been laid down. Finally, other geometric approaches than the ones followed before are investigated.
|
2 |
Analytic Conformal Bootstrap in 2D CFT / 2次元共形ブートストラップの解析的手法Kusuki, Yuya 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第22996号 / 理博第4673号 / 新制||理||1670(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 高柳 匡, 教授 杉本 茂樹, 教授 田中 貴浩 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
3 |
Uniserial Representations of Vec(R) with a Single Casimir EigenvalueKuhns, Nehemiah 05 1900 (has links)
In 1980 Feigin and Fuchs classified the length 2 bounded representations of Vec(R), the Lie algebra of polynomial vector fields on the line, as a result of their work on the cohomology of Vec(R). This dissertation is concerned mainly with the uniserial (completely indecomposable) representations of Vec(R) with a single Casimir eigenvalue and weights bounded below. Such representations are composed of irreducible representations with semisimple Euler operator action, bounded weight space dimensions, and weights bounded below. These are known to be the tensor density modules with lowest weight λ, for any non-zero complex number λ, and the trivial module C, with Vec(R) actions π_λ and π_C, respectively. Our proofs are cohomology arguments involving the first cohomology groups of Vec(R) with values in the space of homomorphisms between two irreducible representations. These results classify the finite length uniserial extensions, with a single Casimir eigenvalue, of admissible irreducible Vec(R) representations with weights bounded below. In almost every case there is at most one uniserial representation with a given composition series. However, in the case of an odd length extension with composition series {π_1,π_C,π_1,…,π_C,π_1}, there is a one-parameter family of extensions. We also give preliminary results on uniserial representations of the Virasoro Lie algebra.
|
4 |
Rank n swapping algebra and its applications / L’algèbre d’échangée de rang n et ses applicationsSun, Zhe 03 July 2014 (has links)
Inspiré par l'algèbre d’échange et birapport de rang n introduit par F. Labourie, nous construisons un anneau muni de la structure de Poisson--- l’algèbre d’échangée de rang n Zn(P) pour étudier les espaces de modules de birapports . Nous prouvons que Zn(P) hérite d'une structure de Poisson provenant de l’algèbre d’échangée. Pour tenir compte des “birapports” dans l’anneau de fraction, en interprétant Zn(P) par un modèle géométrique dans l'étude de la géométrie théorie des invariants, nous montrons que Zn(P) est intègre. Ensuite, nous considérons l'anneau Bn(P) engendreré par les birapports dans l'anneau de fraction de Zn(P). Pour n = 2,3, nous trouvons un homomorphisme injectif poissonienne de l'anneau engendré par coordonnées de Fock-Goncharovde sur l'espace des configurations de drapeaux dans Rn vers Bn(P). En étudiant le système intégrable discret pour l'espace des configurations de polygones N-tordus dans RP1, à une transformation de Fourier discrète, nous rapportons asymptotiquement l'algèbre d’échangée à l'algèbre de Virasoro sur une hypersurface de MN, 1. / Inspired by the swapping algebra and the rank n cross-ratio introduced by F. Labourie, we construct a ring equipped with the swapping Poisson structure---the rank n swapping algebra Zn(P) to study the moduli spaces of cross ratios. We prove that Zn(P) inherits a Poisson structure form the swapping bracket. To consider the "cross-ratios" in the fraction ring, by interpreting Zn(P) by a geometric model in the study of geometry invariant theory, we prove that Zn(P) is an integral domain. Then we consider the ring Bn(P) generated by the cross ratios in the fraction ring of Zn(P). For n = 2,3, we embed in a Poisson way the ring generated by Fock-Goncharov coordinates for configuration space of flags in Rn into Bn(P). By studying the discrete integrable system for the configuration space MN,1 of N-twisted polygons in RP1, up to a discrete Fourier transformation, we asymptotically relate the swapping algebra to the Virasoro algebra on a hypersurface of MN,1.
|
5 |
Hom-Lie algebras and deformationsGarcía Butenegro, Germán January 2019 (has links)
Document intends to re-establish Hom-Lie algebra theory for a wider class of morphisms on the underlying coefficient algebra. A look is taken into deformed Witt and Virasoro algebras and a new direction is taken into further quasi-Hom-Lie VIrasoro-type extensions for different Witt algebras.
|
6 |
Application of co-adjoint orbits to the loop group and the diffeomorphism group of the circleLano, Ralph Peter 01 May 1994 (has links)
No description available.
|
7 |
Classical groups, integrals and Virasoro constraintsXu, Da 01 May 2010 (has links)
First, we consider the group integrals where integrands are the monomials of matrix elements of irreducible representations of classical groups. These group integrals are invariants under the group action. Based on analysis on Young tableaux, we investigate some related duality theorems and compute the asymptotics of the
group integrals for fixed signatures, as the rank of the classical groups go to infinity. We also obtain the Viraosoro constraints for some partition functions, which are power series of the group integrals. Second, we show that the proof of Witten's conjecture can be simplified by using the fermion-boson correspondence, i.e., the KdV hierarchy and Virasoro constraints of the partition function in Witten's conjecture can be achieved naturally. Third, we consider the partition function involving the invariants that are intersection numbers of the moduli spaces of holomorphic maps in nonlinear sigma model. We compute the commutator of the representation of
Virasoro algebra and give a fat graph(ribbon graph) interpretation for each term in the diferential operators.
|
8 |
Observables in the bc systemWard, Brandon 22 January 2016 (has links)
This paper will examine observables in the bc system, a two-dimensional free conformal field theory. We begin by encoding the bc system into the BV formalism following procedures of Costello and Gwilliam. This will allow us to construct the factorization algebra of observables for the bc system. The cohomology of the factorization algebra recovers the observables themselves. In cohomology, we will compute the commutation relations and factorization algebra structure maps for observables supported on disks and annuli. These structure maps will be used to prove the equivalence of the factorization algebra and vertex algebra structures for the bc system. This proof provides a rigorous derivation of the free fermionic vertex algebra starting from the action functional of the bc system. Using this equivalence, we will provide a dictionary to translate the action of the Virasoro algebra to the language of factorization algebras. Also in this paper, we examine the bc system in four-dimensions. We construct its factorization algebra and show that its observables are anti-commutative. Lastly, we prove that the global observables of the bc system are one-dimensional on a compact manifold of complex dimension one or two.
|
9 |
Rank n swapping algebra and its applicationsSun, Zhe 03 July 2014 (has links) (PDF)
Inspired by the swapping algebra and the rank n cross-ratio introduced by F. Labourie, we construct a ring equipped with the swapping Poisson structure---the rank n swapping algebra Zn(P) to study the moduli spaces of cross ratios. We prove that Zn(P) inherits a Poisson structure form the swapping bracket. To consider the "cross-ratios" in the fraction ring, by interpreting Zn(P) by a geometric model in the study of geometry invariant theory, we prove that Zn(P) is an integral domain. Then we consider the ring Bn(P) generated by the cross ratios in the fraction ring of Zn(P). For n = 2,3, we embed in a Poisson way the ring generated by Fock-Goncharov coordinates for configuration space of flags in Rn into Bn(P). By studying the discrete integrable system for the configuration space MN,1 of N-twisted polygons in RP1, up to a discrete Fourier transformation, we asymptotically relate the swapping algebra to the Virasoro algebra on a hypersurface of MN,1.
|
10 |
Série discrète unitaire, caractères, fusion de Connes et sous-facteurs pour l'algèbre Neveu-Schwarz.Palcoux, Sébastien 09 December 2009 (has links) (PDF)
On donne une preuve complète de la classification des représentations d'énergie positive unitaires de l'algèbre Neveu-Schwarz, de telle manière qu'on obtient directement les caractères de la séries discrètes. Ensuite, on explicite leur loi de fusion de Connes et on prouve que les sous-facteurs de Jones-Wassermann sont irréductibles d'indice fini, on donne leur formule.
|
Page generated in 0.0442 seconds