• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 10
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Viral-induced anergy of cell-mediated immunity as detected by the macrophage migration inhibition test

Johnston, Sharon Louise, 1947- January 1973 (has links)
No description available.
2

The antigenic relationships among bovine viral diarrhea virus isolates

Teirab, Bashir Hamid January 2011 (has links)
Typescript. / Digitized by Kansas Correctional Industries
3

CHARACTERIZATION OF IMMUNOGLOBULIN-E-POSITIVE LYMPHOCYTES IN CHRONIC EPSTEIN-BARR VIRUS INFECTIONS

Gersuk, Geoffrey Marc January 1984 (has links)
No description available.
4

The role of dendritic cells in Epstein-Barr virus infection

Chen, Yichen., 陳以晨. January 2006 (has links)
published_or_final_version / abstract / Surgery / Doctoral / Doctor of Philosophy
5

Longitudinal study of Epstein-barr virus (EBV) - specific CD8 + T lymphocyte development in primary EBV infection

Xu, Xuequn., 徐學群. January 2009 (has links)
published_or_final_version / Paediatrics and Adolescent Medicine / Doctoral / Doctor of Philosophy
6

Characterizing Immune Responses to Marburg Virus Infection in Animal Hosts Using Statistical Transcriptomic Analysis

Lee, Albert Kim January 2018 (has links)
Marburg virus (MARV)–along with Ebola Virus–comprises Filoviridae, a family of virus which causes the life-threatening hemorrhagic fever in human and non-human primates for which there is no clinically approved vaccine. For this reason, this virus can potentially lend itself to pandemic and weapons of bioterrorism. Strikingly, this virus yields asymptomatic responses in its recently discovered host Rousettus aegyptiacus. Understanding of the interaction between MARV and different animal hosts will enable the improved understanding of filovirus immunology and the development of effective therapeutic agents. Although cell lines and primary cells have been used to investigate gene expression analysis of this virus, the transcriptomic view of MARV infection on the tissue samples of animal hosts has been an uncharted territory. The comprehensive analysis of transcriptome in hosts and spillover hosts will shed light on the immune responses on a molecular level and potentially allow the comparative analysis to understand the phenotypical differences. However, there have been gaps in resources necessary to carry the transcriptome research for MARV. For example, MARV host Rousettus aegyptiacus genome and transcriptome had not been available. Furthermore, the statistical machinery necessary to analyze multi-tissue/multi-time data was not available. In this dissertation, I introduce the two items that fill these gaps and show the application of the tools I built for novel biological discovery. In particular, I have built 1) the comprehensive de novo transcriptome reference of Rousettus aegyptiacus and 2) the Multilevel Analysis of Gene Expression (MAGE) pipeline to analyze the RNA-seq data with the complex experimental design. I show the application of MAGE in multi-time, multi-tissue transcriptome data of Macaca mulata infected with MARV. In this study, 15 rhesus macaques were sequentially sacrificed via aerosol exposure to MARV Angola over the course of 9 days, and 3 types of lymph node tissues (tracheobronchial, mesenteric, and inguinal) were extracted from each sample and sequenced for gene expression analysis. With MAGE pipeline, I discovered that the posterior median log2FC of genes separates the samples based on day post infection and viral load. I discovered the set of genes such as CD40LG and TMEM197 with interesting trends over time and how similar and different pathways have been influenced in three lymph nodes. I also identified the biologically meaningful clusters of genes based on the topology-based clustering algorithm known as Mapper. Using the MAGE posterior samples, I also determined the genes that are preferentially expressed in tracheobronchial lymph nodes. In addition to new analysis tools and biological findings, I built the gene expression exploration tool for biologists to examine differential gene expression over time in various immune-related pathways and contributing members of the pathways. In conclusion, I have contributed to the two important components in the transcriptome analysis in MARV research and discovered novel biological insights. The MAGE pipeline is modular and extensible and will be useful for the transcriptome research with the complex experimental designs which are becoming increasingly prevalent with the decrease in the cost of sequencing.
7

Maedi-Visna virus : the development of serum and whole blood immunodiagnostic assays.

Boshoff, Christoffel Hendrik. January 1997 (has links)
This thesis describes the development of serum and whole blood immunodiagnostic assays for Maedi-Visna virus (MVV). All previously described recombinant MVV ELISA assays utilised either the core p25 or transmembrane (TM) proteins alone, or combined, but as individual proteins. The p25 and TM genes of MVV were cloned individually into the pGEX-2T expression vector. Both proteins were expressed as a combined fusion protein in frame with glutathione S-transferase (GST). The purified recombinant antigens (GST-TM and GST-TM-p25) were used to develop a MVV ELISA. Sera from 46 positive and 46 negative sheep were tested using the GST-TM and GST-TM-p25 ELISAs and a commercial p25 EIA kit. A two-graph receiver operating characteristic (TG-ROC) analysis program was used to interpret the data. The GST-TM-p25 ELISA was more sensitive than the commercial assay which is based on the p25 antigen alone and more specific than the GST-TM ELISA. The GST-TM-p25 ELISA showed a sensitivity and specificity of 100%. The human AIDS lentivirus transmembrane (TM) glycoprotein portion of the envelope viral protein has been identified as the antigen most consistently recognised by antibodies. There is suggestive evidence that the same applies to MVV as the GST-TM fusion protein, expressed in E. coli, has comparable sensitivity to the GST-TM-p25 fusion protein, but lacks specificity. However, due to the hydrophobic nature of the MVV TM protein, purification of the expressed fusion protein required lengthy purification protocols. This was despite the fact that only a truncated version of the TM protein was expressed. This prompted investigating an alternative expression system that could possibly circumvent the above mentioned problems. The yeast Pichia pastoris is known to be suitable for the high-level expression of heterologous proteins which are secreted into the culture supernatant. These features made P. pastoris an attractive host for the expression of the hydrophobic TM protein of MVV. However, limited success was achieved as only low expression levels were obtained and detection and quantification was only accomplished by means of ELISA. Evaluation of the diagnostic performance of the P. pastoris expressed MVV TM-polypeptide was performed using a panel of 36 confirmed negative and positive sera, and evaluated using a TG-ROC analysis programme, which yielded an equal Se and Sp of 83%. The use of a novel rapid immunoassay system, which allows the detection of circulating antibodies in whole blood, has been investigated for use as a MVV diagnostic assay. The central feature of this immunoassay lies in a monoclonal antibody against a glycophorin epitope present on all sheep erythrocytes. A Fab'-peptide conjugate was constructed by coupling a synthetic peptide, corresponding to a sequence from MVV TM protein, to the hinge region of the Fab' fragment of the antisheep erythrocyte antibody. Within the limited number of 10 seronegative and 10 seropositive samples the autologous red blood cell agglutination assay had a sensitivity of 90% and a specificity of 80%. Despite the limitations and difficulties encountered, the use of such rapid whole blood immunodiagnostic assays for MVV holds promise. / Thesis (Ph.D.)-University of Natal, Durban, 1997.
8

Japanese Encephalitis Virus Infection In Vitro : Role Of Type-I Interferons And NF-kB In The Induction Of Classical And Nonclassical MHC-I Molecules

Abraham, Sojan 01 1900 (has links)
Japanese encephalitis virus (JEV) is one of the major causes of encephalitis in Asia. JEV causes serious inflammation of the brain, which may lead to permanent brain damage and has a high mortality rate. Almost 3 billion people live in JE endemic areas and JEV causes an estimated 20,000 cases of disease and 6000 deaths per year. JEV is a positive stranded RNA virus belonging to the Flavivirus genus of the family Flaviviridae. The genome of JEV is about 11 kb long and codes for a polyprotein which is cleaved by both host and viral encoded proteases to form 3 structural and 7 non-structural proteins. JEV transmission occurs through a zoonotic cycle involving mosquitoes and vertebrate amplifying hosts, chiefly pigs and ardeid birds. Humans are infected when bitten by an infected mosquito and are dead end hosts. The role of humoral and cell mediated immune responses during JEV infection have been studied by several groups. While the humoral responses play a central role in protection against JEV, the cell mediated immune responses contributing to this end are not fully understood. The MHC molecules have been known to play predominant roles in host responses to viral infections and the consequences of virus infection on the expression of MHC molecules are varied. The expression of MHC-I molecules is known to decrease upon infection with many viruses such as HIV, MCMV, HCMV, Adv, and EBV. In contrast, infection with flavivirus such as West Nile Virus (WNV) has been shown to increase the cell surface expression of both MHC-I and MHC-II molecules. It has been reported previously that WNV infection increases the cell surface expression of adhesion molecules such as ICAM-1, VCAM-1 as well as E-Selectin and these changes were mediated directly by WNV and not by soluble cytokines. In contrast to classical MHC-I molecules, the nonclassical MHC-I molecules do not belong to a single group of structurally and functionally homologous proteins and normally have lower cell surface expression. Earlier studies have shown that the expression of nonclassical MHC-I molecules were induced during infection with JHM strain of mouse hepatitis virus (MHV). However, the functional significance of this induction is unclear. Expression of nonclassical MHC-I molecules upon flaviviral infection is not very well understood. In this thesis, evidence is presented that JEV infection induces the expression of both classical and nonclassical MHC-I molecules on primary mouse brain astrocytes, mouse embryonic fibroblasts (MEFs) and H6 (hepatoma cell). The levels of adhesion molecules as well as molecules involved in antigen processing and presentation were also analyzed and our results clearly demonstrate that JEV infection induces their expression on astrocytes, MEFs and H6. The role of NF-κB and type-I IFNs in the induction of classical and nonclassical MHC-I molecules as well as molecules involved in antigen processing and presentation were also analyzed and our results demonstrated that type-I IFN mediated signaling is responsible for the induction of these molecules during JEV infection. Chapter 1 discusses the innate and adaptive immune system, the role of classical and nonclassical MHC molecules in the initiation of immune response and diverse strategies adapted by different viruses to evade the immune response. It also includes a detailed discussion about the IFN and NF-κB signaling pathways and their modulation by viral infection. Finally, the genome organization, epidemiology, transmission cycle, pathogenesis and pathology, clinical features, humoral as well as cell mediated immune response to JEV infection and the current vaccine status to JEV infection are briefly discussed. Chapter 2 describes the general materials and methods used in this study. It includes the details of the reagents and cell lines used in the experiments. It also discusses the various techniques such as RT-PCR, FACS analysis, EMSA and ELISA. Chapter 3 focusses on the validation of different knockout MEFs used in the study as well as confirming the purity of primary astrocyte cultures established from pub brains. The susceptibility of various cells to JEV infection has also been investigated. Our results confirmed the authenticity of all the cells and the purity of primary astrocyte cultures used in the study. Our results also indicated that all the cells used in the study are susceptible to JEV infection. Chapter 4 discusses the expression of MHC and related genes involved in immune response upon JEV infection of primary mouse brain astrocytes, MEFs and H6. Chapter 4 demonstrates for the first time that JEV infection induces the expression of nonclassical MHC-I or class Ib molecules namely Qa-1, Qb1 and T10 in addition to the induction of classical MHC-I molecules. In contrast to WNV, there was no increase in the cell surface expression of MHC-II molecules upon JEV infection of primary mouse brain astrocytes. JEV infection also induces the expression of adhesion molecules as well as molecules involved in antigen processing and presentation namely Tap1, Tap2, Tapasin, Lmp2, Lmp7 and Lmp10. Chapter 5 demonstrates that JEV infection induces NF-κB activation in astrocytes and MEFs. Studies using MEFs deficient in classical and alternate pathways of NF-κB activation indicate that JEV activates the classical pathway of NF-κB activation and is dependent on canonical lKKβ/IKK2 activity. JEV infection of astrocytes, MEFs and H6 induces the production of type-I IFNs. To determine the mechanism of type-I IFN induction during JEV infection, MEFs deficient in NF-κB signaling and IFN signaling were used. Results indicate that type-I IFN production in MEFs occurs by both NF-κB dependent and independent mechanisms. In contrast, the production of IFN-α was completely abrogated in IFNAR-\- MEFs whereas IFN-β production was greatly reduced. Production of type-I IFNs in IFNGR-\- MEFs is also reduced upon JEV infection but the reason for this is unclear. Chapter 6 demonstrates that JEV induced expression of classical MHC-I molecules occurs by type-I IFN mediated signaling. This result is in contrast to WNV infection, in which both NF-κB and type-I IFNs are involved in the induction of classical MHC-I molecules. Type-I IFNs were also shown to be involved in the induction of nonclassical MHC molecules namely, Qa-1 and Qb1 during JEV infection. In contrast, the expression of T10, another nonclassical MHC molecule occurs independent of type-I IFN signaling. The expression of molecules involved in antigen processing and presentation namely, Tap1, Tap2, Lmp2 and Lmp7 was type-I IFN-mediated, whereas the expression of Tapasin and Lmp10 was mediated by both type-I IFN dependent and independent mechanisms. The expression of VCAM-1 was dependent on NF-κB mediated signaling. Chapter 7 precisely describes the underlying mechanism of induction of MHC and various other related molecules and their significance during JEV infection. In addition, it also includes a working model for the induction of these molecules during JEV infection. In summary, this is the first study in which the mechanism of JEV mediated induction of classical as well as nonclassical MHC molecules has been studied in detail. This study clearly demonstrated that type-I IFNs are involved in the induction of classical and nonclassical MHC-I molecules during JEV infection. The functional significance of this JEV mediated induction of classical MHC-I molecules is unclear, but it has been proposed that this is to escape from the action of NK cells. The absence of MHC-II induction during JEV infection could be important because it may lead to the initiation of an immune response which is different from that induced during other viral infections which induce the expression of MHC-II molecules. In contrast to classical MHC-I molecules, the functional and biological significance of nonclassical MHC-I molecules are poorly studied. Nonclassical MHC-I molecules play an important role in bridging adaptive and innate immune response. So the nonclassical MHC molecules induced during JEV infection may play an important role in the initiation of immune response during JEV infection. The role these nonclassical MHC-I molecules in antigen presentation during JEV infection is not known. These nonclassical antigens are also recognized by NK and γδT cells, thus the expression of nonclassical MHC-I molecules during JEV infection might also confer a protective role.
9

Infection of Human Cell Lines by Japanese Encephalitis Virus : Increased Expression and Release of HLA-E, a Non-classical HLA Molecule

Shwetank, * January 2013 (has links) (PDF)
Japanese encephalitis virus (JEV) causes viral encephalitis in new born and young adults that is prevalent in different parts of India and other parts of South East Asia with an estimated 6000 deaths per year. JEV is a single stranded RNA virus that belongs to the Flavivirusgenus of the family Flaviviridae. It is a neurotropic virus which infects the central nervous system (CNS). The virus follows a zoonotic life-cycle involving mosquitoes and vertebrates, chiefly pigs and ardeid birds, as amplifying hosts. Humans are dead end hosts. After entry into the host following a mosquito bite, JEV infection leads to acute peripheral leukocytosis in the brain and damage to Blood Brain Barrier (BBB). The exact role of the endothelial cells during CNS infection is still unclear. However, disruption of this endothelial barrier has been shown to be an important step in entry of the virus into the brain. Humoral and cell mediated immune responses during JEV infection have been intensively investigated. Previous studies from our lab have shown the activation of cytotoxic T-cells (CTLs) upon JEV infection. MHC molecules play pivotal role in eliciting both adaptive (T-cells) and innate (NK cells) immune response against viral invasion. Many viruses such as HIV, MCMV, HCMV, AdV and EBV have been found to decrease MHC expression upon infection. On the contrary, flaviviruses like West Nile Virus (WNV) have been found to increase MHC-I and MHC-II expression. More recently, data from our lab has shown that JEV infection can lead to upregulation of mouse non-classical MHC class Ib molecules like Qb1, Qa1 and T-10 along with classical MHC molecules. Non-classical MHC molecules are important components of the innate and adaptive immune systems. Non-classical MHC molecules differ from their classical MHC class I counterparts by their limited polymorphism, restricted tissue distribution and lower levels of cell surface expression. Human classical MHC class I molecules are HLA-A, -B and –C while non-classical MHC Class Ib molecules are HLA-E, -G and –F. HLA-E, the human homologue of the mouse non-classical MHC molecule, Qa-1b has been shown to be the ligand for the inhibitory NK, NKG2A/CD94 and may bridge innate and adaptive immune responses. In this thesis, we have studied the expression of human classical class I molecules HLA-A, -B, -C and the non-classical HLA molecule, HLA-E in immortalized human brain microvascular endothelial cells (HBMEC), human endothelial like cell line ECV304 (ECV), human glioblastoma cell line U87MG and human foreskin fibroblast cells (HFF). We observed an upregulation of classical HLA molecules and HLA-E mRNA in endothelial and fibroblast cells upon JEV infection. This mRNA increase also resulted in upregulation of cell surface classical HLA molecules and HLA-E in HFF cells but not in both the human endothelial cell lines, ECV and HBMECs. Release of soluble classical HLA molecules upon cytokine treatment has been a long known phenomenon. Recently HLA-E has also been shown to be released as a 37 kDa protein from endothelial cells upon cytokine treatments. Our study suggests that JEV mediated upregulation of classical HLA and HLA-E upregulation leads to release of both Classical HLA molecules and HLA-E as soluble forms in the human endothelial cell lines, ECV and HBMEC. This shedding of sHLA-E from human endothelial cells was found to be mediated by matrix metalloproteinase (MMP) proteolytic activity. MMP-9, a protease implicated in release of sHLA molecules was also found to be upregulated upon JEV infection only in endothelial cell lines but not in HFF cells. Our study provides evidence that the JEV mediated solubilisation of HLA-E could be mediated by MMP-9. Further, we have tried to understand the role of the MAPK pathway and NF-κB pathway in the process of HLA-E solubilisation by using specific inhibitors of these pathways during JEV infection of ECV cells. Our data suggests that release of sHLA-E is dependent on p38 and JNK pathways while ERK 1/2 and NF-κB pathway only had a minor role to play in this process. Treatment of endothelial cells with TNF-α, IL-1β and IFN-γ is known to result in release of sHLA-E. In addition to TNF-α and IFNtreatment, we observed that activating agents like poly (I:C), LPS and PMA also resulted in the shedding of sHLA-E from ECV as well as U87MG but not from HFF cells. Treatment of endothelial cells with IFN-β, a type-I interferon also led to release of sHLA-E. IFN-γ, a type II interferon and TNF-α are known to show additive increase in solubilisation of HLA-E. We studied the interaction between type I interferon, IFN-β and TNF-α with regard to shedding of sHLA- E. Both IFNand TNF, when present together caused an additive increase in the shedding of sHLA-E. These two cytokines were also found to potentiate the HLA-E and MMP-9 mRNA expression. Hence, our data suggest that these two cytokines could be working conjunctly to release HLA-E, when these two cytokines are present together as in the case of virus infection of endothelial cells. HLA-E is known to be a ligand for NKG2A/CD94 inhibitory receptors present on NK and a subset of T cells. Previous reports have suggested that NKG2A/CD94 mediated signaling events could inhibit ERK 1/2 phosphorylation leading to inhibition of NK cell activation. IL-2 mediated ERK 1/2 phosphorylation is known to play a very important role in maintenance and activation of NK cells. We studied the effects of sHLA-E that was released, either by JEV infection or IFN-γ treatment on IL-2 mediated ERK 1/2 phosphorylation in two NK cell lines, Nishi and NKL. The soluble HLA-E that was released upon JEV infection was functionally active since it inhibited IL-2 and PMA induced phosphorylation of ERK 1/2 in NKL and Nishi cells. Virus infected or IFN-γ treated ECV cell culture supernatants containing sHLA-E was also found to partially inhibit IL-2 mediated induction of CD25 molecules on NKL cells. CD25 is a component of the high affinity IL-2 receptor and hence could play an important role in proliferation and activation of NK cells. sHLA-E was also found to inhibit IL-2 induced [3H]-thymidine incorporation suggesting that, similar to cell surface expressed HLA-E, sHLA-E could also inhibit the proliferation and activation of NK cells. In summary, we found that establishment of JEV infection and production of cytokines like IFN-β, TNF-α, IL-6 along with MMP-9 in human endothelial cells. These cytokines may also indirectly lead to the reported damage and leukocyte infiltration across infected and uninfected vicinal endothelial cells. The increased surface expression of HLA-E in fibroblast and release of sHLA and sHLA-E molecules from endothelial cells may have an important immunoregulatory role. HLA-E is an inhibitory ligand for NKG2A/CD94 positive CD8+ T and NK cells. Hence our finding that sHLA-E can inhibit NK cell proliferation suggests an immune evasive strategy by JEV.
10

Vaccinia Virus Binding and Infection of Primary Human Leukocytes

Byrd, Daniel James January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Vaccinia virus (VV) is the prototypical member of the orthopoxvirus genus of the Poxviridae family, and is currently being evaluated as a vector for vaccine development and cancer cell-targeting therapy. Despite the importance of studying poxvirus effects on the human immune system, reports of the direct interactions between poxviruses and primary human leukocytes (PHLs) are limited. We studied the specific molecular events that determine the VV tropism for major PHL subsets including monocytes, B cells, neutrophils, NK cells, and T cells. We found that VV exhibited an extremely strong bias towards binding and infecting monocytes among PHLs. VV binding strongly co-localized with lipid rafts on the surface of these cell types, even when lipid rafts were relocated to the cell uropods upon cell polarization. In humans, monocytic and professional antigen-presenting cells (APCs) have so far only been reported to exhibit abortive infections with VV. We found that monocyte-derived macrophages (MDMs), including granulocyte macrophage colony-stimulating factor (GM-CSF)-polarized M1 and macrophage colony-stimulating factor (M-CSF)-polarized M2, were permissive to VV replication. The majority of virions produced in MDMs were extracellular enveloped virions (EEV). Visualization of infected MDMs revealed the formation of VV factories, actin tails, virion-associated branching structures and cell linkages, indicating that infected MDMs are able to initiate de novo synthesis of viral DNA and promote virus release. Classical activation of MDMs by LPS plus IFN-γ stimulation caused no effect on VV replication, whereas alternative activation of MDMs by IL-10 or LPS plus IL-1β treatment significantly decreased VV production. The IL-10-mediated suppression of VV replication was largely due to STAT3 activation, as a STAT3 inhibitor restored virus production to levels observed without IL-10 stimulation. In conclusion, our data indicate that PHL subsets express and share VV protein receptors enriched in lipid rafts. We also demonstrate that primary human macrophages are permissive to VV replication. After infection, MDMs produced EEV for long-range dissemination and also form structures associated with virions which may contribute to cell-cell spread.

Page generated in 0.1258 seconds