• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 5
  • 3
  • 3
  • 1
  • Tagged with
  • 27
  • 27
  • 15
  • 14
  • 10
  • 9
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Combined sensor of dielectric constant and visible and near infrared spectroscopy to measure soil compaction using artificial neural networks

Al-Asadi, Raed January 2014 (has links)
Soil compaction is a widely spread problem in agricultural soils that has negative agronomic and environmental impacts. The former may lead to poor crop growth and yield, whereas the latter may lead to poor hydraulic properties of soils, and high risk to flooding, soil erosion and degradation. Therefore, the elimination of soil compaction must be done on regular bases. One of the main parameters to quantify soil compaction is soil bulk density (BD). Mapping of within field variation in soil BD will be a main requirement for within field management of soil compaction. The aim of this research was to develop a new approach for the measurement of soil BD as an indicator of soil compaction. The research relies on the fusion of data from visible and near infrared spectroscopy (vis-NIRS), to measure soil gravimetric moisture content (ω), with frequency domain reflectometry (FDR) data to measure soil volumetric moisture content (θv). The values of the estimated ω and θv, for the same undisturbed soil samples were collected from selected locations, textures, soil moisture contents and land use systems to derive soil BD. A total of 1013 samples were collected from 32 sites in the England and Wales. Two calibration techniques for vis-NIRS were evaluated, namely, partial least squares regression (PLSR) and artificial neural networks (ANN). ThetaProbe calibration was performed using the general formula (GF), soil specific calibration (SSC), the output voltage (OV) and artificial neural networks (ANN). ANN analyses for both ω and θv properties were based either on a single input variable or multiple input variables (data fusion). Effects of texture, moisture content, and land use on the prediction accuracy on ω, θv and BD were evaluated to arrive at the best experimental conditions for the measurement of BD with the proposed new system. A prototype was developed and tested under laboratory conditions and implemented in-situ for mapping of ω, θv and BD. When using the entire dataset (general data set), results proved that high measurement accuracy can be obtained for ω and θv with PLSR and the best performing traditional calibration method of the ThetaProbe with R2 values of 0.91 and 0.97, and root mean square error of prediction (RMSEp) of 0.027 g g-1 and 0.019 cm3 cm-3, respectively. However, the ANN – data fusion method resulted in improved accuracy (R2 = 0.98 and RMSEp = 0.014 g g-1 and 0.015 cm3 cm-3, respectively). This data fusion approach gave the best accuracy for BD assessment when only vis-NIRS spectra and ThetaProbe V were used as an input data (R2 = 0.81 and RMSEp = 0.095 g cm-3). The moisture level (L) impact on BD prediction revealed that the accuracy improved with soil moisture increasing, with RMSEp values of 0.081, 0.068 and 0.061 g cm-3, for average ω of 0.11, 0.20 and 0.28 g g-1, respectively. The influence of soil texture was discussed in relation with the clay content in %. It was found that clay positively affected vis-NIRS accuracy for ω measurement and no obvious impact on the dielectric sensor readings was observed, hence, no clear influence of the soil textures on the accuracy of BD prediction. But, RMSEp values of BD assessment ranged from 0.046 to 0.115 g cm-3. The land use effect of BD prediction showed measurement of grassland soils are more accurate compared to arable land soils, with RMSEp values of 0.083 and 0.097 g cm-3, respectively. The prototype measuring system showed moderate accuracy during the laboratory test and encouraging precision of measuring soil BD in the field test, with RMSEp of 0.077 and 0.104 g cm-3 of measurement for arable land and grassland soils, respectively. Further development of the prototype measuring system expected to improve prediction accuracy of soil BD. It can be concluded that BD can be measured accurately by combining the vis-NIRS and FDR techniques based on an ANN-data fusion approach.
12

On-line measurement of some selected soil properties for controlled input crop management systems

Kuang, Boyan Y. January 2012 (has links)
The evaluation of the soil spatial variability using a fast, robust and cheap tool is one of the key steps towards the implementation of Precision Agriculture (PA) successfully. Soil organic carbon (OC), soil total nitrogen (TN) and soil moisture content (MC) are needed to be monitored for both agriculture and environmental applications. The literature has proven that visible and near infrared (vis-NIR) spectroscopy to be a quick, cheap and robust tool to acquire information about key soil properties simultaneously with relatively high accuracy. The on-line vis-NIR measurement accuracy depends largely on the quality of calibration models. In order to establish robust calibration models for OC, TN and MC valid for few selected European farms, several factors affecting model accuracy have been studied. Nonlinear calibration techniques, e.g. artificial neural network (ANN) combined with partial least squares regression (PLSR) has provided better calibration accuracy than the linear PLSR or principal component regression analysis (PCR) alone. It was also found that effects of sample concentration statistics, including the range or standard derivation and the number of samples used for model calibration are substantial, which should be taking into account carefully. Soil MC, texture and their interaction effects are other principle factors affecting the in situ and on-line vis-NIR measurement accuracy. This study confirmed that MC is the main negative effect, whereas soil clay content plays a positive role. The general calibration models developed for soil OC, TN and MC for farms in European were validated using a previously developed vis-NIR on-line measurement system equipped with a wider vis-NIR spectrophotometer (305 – 2200 nm) than the previous version. The validation results showed this wider range on-line vis-NIR system can acquire larger than 1500 data point per ha with a very good measurement accuracy for TN and OC and excellent accuracy for MC. The validation also showed that spiking few target field samples into the general calibration models is an effective and efficient approach for upgrading the implementation of the on-line vis-NIR sensor for measurement in new fields in the selected European farms.
13

Dioxygen reactivity of new models of copper oxygenases : electrochemical and spectroscopic studies / Réactivité vis-à-vis de l’oxygène des nouveaux modèles dinucléaires au cuivre : études électrochimiques et spectroscopiques

Gennarini, Federica 29 November 2017 (has links)
La molécule de méthane possède la liaison C-H la plus forte parmi les hydrocarbures (BDE = 104 kcal mol-1) : son oxydation en conditions douces représente un challenge d'importance. La Méthane Monoxygénase particulaire (pMMO) est une enzyme à cuivre qui catalyse l'oxydation du méthane (CH4) en méthanol (CH3OH). Le site actif de l'enzyme est composé d'atomes de cuivre séparés par 2.6 Å. Des recherches récentes suggèrent qu'un cluster Cu2 III,II/O2 à valence mixte soit un intermédiaire-clé du cycle catalytique. L'objectif de ce travail vise à la synthèse et caractérisation de nouveaux complexes dinucléaires à valence mixte de type bis(µ-oxo)Cu2 III,II ou (µ-OH, µ-O)Cu2 III,II. Deux familles de motifs coordinants ont été mises en oeuvre, polypyridyle ou polyamide ; les deux sites sont assemblés par des ponts courts et rigides, phenoxo, naphthyridine ou alkoxo. De nouveaux complexes ont été caractérisés par électrochimie, spectroscopies UV-visible et RPE, et par des calculs théoriques. Un dispositif original de cryo-spectroélectrochimie UV-vis-NIR a été développé en parallèle de cette étude : il permet l'identification spectroscopique d'intermédiaires transitoires, réputés très instables à température ambiante. De nouveaux composés à valence mixte, Cu2 III,II(μ-OH, μ-O) et Cu2 III,IIbis(μ-OH) ont été identifiés. Ces résultats élargissent le champ des données de cette famille d'intermédiaires instables limitée jusqu'ici à un seul exemple. / Methane has the strongest C-H bond of any hydrocarbon (BDE = 104 kcal mol-1); its oxidation under mild conditions remains a great challenge. The particulate Methane Monooxygenase (pMMO) is a copper enzyme that oxides methane (CH4) to methanol (CH3OH). In the active site of the enzyme, two copper ions are located at a short distance (2.6 Å). Recent researches have suggested a mixed-valent Cu2III,II/O2 cluster as a key intermediate in the catalytic cycle. The main objective of this work was the synthesis and characterization of new mixed-valent CuIIICuII bis(μ-oxo) and (μ-OH, μ-O) dinuclear complexes. For this purpose we designed promising symmetrical and unsymmetrical complexes based on specific and distinct scaffolds for each side of the structure. Two families of coordination pattern have been used, polypyridyle or polyamide; the two sites are shortly and rigidly bridged by phenoxo, alkoxo or naphthyridine linkers. New complexes have been characterized by electrochemistry, UV-vis and EPR spectroscopies, and by theoretical calculations. A new cryo-UV-Vis-NIR spectroelectrochemical set up, developed in parallel during this work, has allowed the spectroscopic identification of these transient intermediate species, known to be unstable at room temperature. New mixed-valence Cu2 III,II(μ-OH, μ-O) and Cu2 III,IIbis(μ-OH) complexes have been characterized. These results expand the recent knowledge on the only mixed valent CuIII(μ-OH)CuII species described so far.
14

The Mobilization of Actinides by Microbial Ligands Taking into Consideration the Final Storage of Nuclear Waste - Interactions of Selected Actinides U(VI), Cm(III), and Np(V) with Pyoverdins Secreted by Pseudomonas fluorescens and Related Model Compounds (Final Report BMBF Project No.: 02E9985)

Glorius, M., Moll, H., Bernhard, G., Roßberg, A., Barkleit, A. 31 March 2010 (has links) (PDF)
The groundwater bacterium Pseudomonas fluorescens (CCUG 32456) isolated at a depth of 70 m in the Äspö Hard Rock Laboratory secretes a pyoverdin-mixture with four main components (two pyoverdins and two ferribactins). The dominant influence of the pyoverdins of this mixture could be demonstrated by an absorption spectroscopy study. The comparison of the stability constants of U(VI), Cm(III), and Np(V) species with ligands simulating the functional groups of the pyoverdins results in the following order of complex strength: pyoverdins (PYO) > trihydroxamate (DFO) > catecholates (NAP, 6­HQ) > simple hydroxamates (SHA, BHA). The pyoverdin chromophore functionality shows a large affinity to bind actinides. As a result, pyoverdins are also able to complex and to mobilize elements other than Fe(III) at a considerably high efficiency. It is known that EDTA may form the strongest actinide complexes among the various organic components in nuclear wastes. The stability constants of 1:1 species formed between Cm(III) and U(VI) and pyoverdins are by a factor of 1.05 and 1.3, respectively, larger compared to the corresponding EDTA stability constants. The Np(V)-PYO stability constant is even by a factor of 1.83 greater than the EDTA stability constant. The identified Np(V)-PYO species belong to the strongest Np(V) species with organic material reported so far. All identified species influence the actinide speciation within the biologically relevant pH range. The metal binding properties of microbes are mainly determined by functional groups of their cell wall (LPS: Gram-negative bacteria and PG: Gram-positive bacteria). On the basis of the determined stability constants raw estimates are possible, if actinides prefer to interact with the microbial cell wall components or with the secreted pyoverdin bioligands. By taking pH 5 as an example, U(VI)-PYO interactions are slightly stronger than those observed with LPS and PG. For Cm(III) we found a much stronger affinity to aqueous pyoverdin species than to functional groups of the cell wall compartments. A similar behavior was observed for Np(V). This shows the importance of indirect interaction processes between actinides and bioligands secreted by resident microbes.
15

Synthese, spektroskopische Charakterisierung und Untersuchung des elektrochromen Verhaltens der Diphthalocyanine des Dysprosiums, Holmiums, Erbiums, Thuliums und Ytterbiums

Graehlert, Xina 27 January 1998 (has links)
Die Diphthalocyanine der Seltenerdmetalle werden durch Reaktion von Seltenerdmetallacetat mit o-Phthalsaeuredinitril hergestellt. Die Diphthalocyanine existieren in zwei Formen, die sich in der Existenz eines delokalisierten freien Elektrons (Radikalform) oder eines ¨zusaetzlichen¨ Wasserstoffatoms unterscheiden. Die Charakterisierung der beiden Diphthalocyaninformen erfolgt mittels der IR-Spektroskopie und UV/VIS/NIR-Spektroskopie. Detailliert wird das spektroskopische Verhalten der Diphthalocyanine in unterschiedlichen Loesungsmitteln untersucht. ESR-spektroskopisch ist das freie Elektron der Radikalform nachweisbar. Zur Untersuchung des elektrochromen Verhaltens der Diphthalocyanine werden Schichten durch Sublimationsverfahren oder durch LB-Technik hergestellt. Die Analyse der Schichtstruktur erfolgt mittels HRTEM. Das elektrochrome Verhalten wird unter Beruecksichtigung des Schichtherstellungsverfahrens, der Diphthalocyaninform und der Art des verwendeten Elektrolyten untersucht. Die beobachteten Farbaenderungen reichen von violett, blau, gruen, blass-gelb, orange nach rot. Die entsprechenden UV/VIS-Spektren werden im Zusammenhang mit den ablaufenden Oxidations- und Reduktionsreaktionen diskutiert.
16

Evaluating satellite and supercomputing technologies for improved coastal ecosystem assessments

Mccarthy, Matthew James 06 November 2017 (has links)
Water quality and wetlands represent two vital elements of a healthy coastal ecosystem. Both experienced substantial declines in the U.S. during the 20th century. Overall coastal wetland cover decreased over 50% in the 20th century due to coastal development and water pollution. Management and legislative efforts have successfully addressed some of the problems and threats, but recent research indicates that the diffuse impacts of climate change and non-point source pollution may be the primary drivers of current and future water-quality and wetland stress. In order to respond to these pervasive threats, traditional management approaches need to adopt modern technological tools for more synoptic, frequent and fine-scale monitoring and assessment. In this dissertation, I explored some of the applications possible with new, commercial satellite imagery to better assess the status of coastal ecosystems. Large-scale land-cover change influences the quality of adjacent coastal water. Satellite imagery has been used to derive land-cover maps since the 1960’s. It provides multiple data points with which to evaluate the effects of land-cover change on water quality. The objective of the first chapter of this research was to determine how 40 years of land-cover change in the Tampa Bay watershed (6,500 km2) may have affected turbidity and chlorophyll concentration – two proxies for coastal water quality. Land cover classes were evaluated along with precipitation and wind stress as explanatory variables. Results varied between analyses for the entire estuary and those of segments within the bay. Changes in developed land percent cover best explained the turbidity and chlorophyll-concentration time series for the entire bay (R2 > 0.75, p < 0.02). The paucity of official land-cover maps (i.e. five maps) restricted the temporal resolution of the assessments. Furthermore, most estuaries along the Gulf of Mexico do not have forty years of water-quality time series with which to perform evaluations against land-cover change. Ocean-color satellite imagery was used to derive proxies for coastal water with near-daily satellite observations since 2000. The goal of chapter two was to identify drivers of turbidity variability for 11 National Estuary Program water bodies along the Gulf of Mexico. Land cover assessments could not be used as an explanatory variable because of the low temporal resolution (i.e. approximately one map per five-year period). Ocean color metrics were evaluated against atmospheric, meteorological, and oceanographic variables including precipitation, wind speed, U and V wind vectors, river discharge, and water level over weekly, monthly, seasonal and annual time steps. Climate indices like the North Atlantic Oscillation and El Niño Southern Oscillation index were also examined as possible drivers of long-term changes. Extreme turbidity events were defined by the 90th and 95th percentile observations over each time step. Wind speed, river discharge and El Niño best explained variability in turbidity time-series and extreme events (R2 > 0.2, p < 0.05), but this varied substantially between time steps and estuaries. The background land cover analyses conducted for coastal water quality studies showed that there are substantial discrepancies between the wetland extent estimates mapped by local, state and federal agencies. The third chapter of my research sought to examine these differences and evaluate the accuracy and precision of wetland maps using high spatial-resolution (i.e. two-meter) WorldView-2 satellite imagery. Ground validation data showed that wetlands mapped at two study sites in Tampa Bay were more accurately identified by WorldView-2 than by Landsat imagery (30-meter resolution). When compared to maps produced separately by the National Oceanic and Atmospheric Administration, Southwest Florida Water Management District, and National Wetland Inventory, we found that these historical land cover products overestimated by 2-10 times the actual extent of wetlands as identified in the WorldView-2 maps. We could find no study that had utilized more than six of these commercial images for a given project. Part of the problem is cost of the images, but there is also the cost of processing the images, which is typically done one at a time and with substantial human interaction. Chapter four explains an approach to automate the preprocessing and classification of imagery to detect wetlands within the Tampa Bay watershed (6,500 km2). Software scripts in Python, Matlab and Linux were used to ingest 130 WorldView-2 images and to generate maps that included wetlands, uplands, water, and bare and developed land. These maps proved to be more accurate at identifying forested wetland (78%) than those by NOAA, SWFWMD, and NWI (45-65%) based on ground validation data. Typical processing methods would have required 4-5 months to complete this work, but this protocol completed the 130 images in under 24 hours. Chapter five of the dissertation reviews coastal management case studies that have used satellite technologies. The objective was to illustrate the utility of this technology. The management sectors reviewed included coral reefs, wetlands, water quality, public health, and fisheries and aquaculture.
17

Organometal Halide Perovskite Solar Absorbers and Ferroelectric Nanocomposites for Harvesting Solar Energy

Hettiarachchi, Chaminda Lakmal 13 November 2017 (has links)
Organometal halide perovskite absorbers such as methylammonium lead iodide chloride (CH3NH3PbI3-xClx), have emerged as an exciting new material family for photovoltaics due to its appealing features that include suitable direct bandgap with intense light absorbance, band gap tunability, ultra-fast charge carrier generation, slow electron-hole recombination rates, long electron and hole diffusion lengths, microsecond-long balanced carrier mobilities, and ambipolarity. The standard method of preparing CH3NH3PbI3-xClx perovskite precursors is a tedious process involving multiple synthesis steps and, the chemicals being used (hydroiodic acid and methylamine) are quite expensive. This work describes a novel, single-step, simple, and cost-effective solution approach to prepare CH3NH3PbI3-xClx thin films by the direct reaction of the commercially available CH3NH3Cl (or MACl) and PbI2. A detailed analysis of the structural and optical properties of CH3NH3PbI3-xClx thin films deposited by aerosol assisted chemical vapor deposition is presented. Optimum growth conditions have been identified. It is shown that the deposited thin films are highly crystalline with intense optical absorbance. Charge carrier separation of these thin films can be enhanced by establishing a local internal electric field that can reduce electron-hole recombination resulting in increased photo current. The intrinsic ferroelectricity in nanoparticles of Barium Titanate (BaTiO3 -BTO) embedded in the solar absorber can generate such an internal field. A hybrid structure of CH3NH3PbI3-xClx perovskite and ferroelectric BTO nanocomposite FTO/TiO2/CH3NH3PbI3-xClx: BTO/P3HT/Cu as a new type of photovoltaic device is investigated. Aerosol assisted chemical vapor deposition process that is scalable to large-scale manufacturing was used for the growth of the multilayer structure. TiO2 and P3HT with additives were used as ETL and HTL respectively. The growth process of the solar absorber layer includes the nebulization of a mixture of PbI2 and CH3NH3Cl perovskite precursors and BTO nanoparticles dissolved in DMF, and injection of the aerosol into the growth chamber and subsequent deposition on TiO2. While high percentage of BTO in the film increases the carrier separation, it also leads to reduced carrier generation. A model was developed to guide the optimum BTO nanoparticle concentration in the nanocomposite films. Characterization of perovskite solar cells indicated that ferroelectric polarization of BTO nanoparticles leads to the increase of the width of depletion regions in the perovskite layer hence the photo current was increased by one order of magnitude after poling the devices. The ferroelectric polarization of BTO nanoparticles within the perovskite solar absorber provides a new perspective for tailoring the working mechanism and photovoltaic performance of perovskite solar cells.
18

Charakterizace plodů aronie (Aronia melanocarpa) a muchovníku (Amelanchier alnifolia) / Characterisation of chokeberry and saskatoon berry fruits

Burdějová, Lenka January 2014 (has links)
Diploma thesis deals with the characterization of chokeberry (Aronia melanocarpa) and saskatoon berry (Amelanchier alnifolia) fruits. The theoretical part focuses on the botanical classification, chemical composition, curative effects and the use of chokeberry and saskatoon berry in the food industry. Further, the attention is also devoted to a review of methods for the determination of important antioxidants, specialized on the determination of polyphenols, anthocyanins, ascorbic acid and total antioxidant activity. The experimental part of the work deals with the determination of selected parameters in different varieties of chokeberry and serviceberry, harvested in 2012 and 2013 using spectroscopic and chromatographic techniques with an emphasis on effect of solvent (50% ethanol, destilled water, DMSO). Specifically total content of polyphenols and anthocyanins, color characteristics using the CIE L*a*b* system and the ability of the sample to reduce the iron are determined using the UV-VIS-NIR spectroscopy. Further ascorbic acid concentration in individual extracts is quantified by High performance liquid chromatography coupled with a diode array detector and the total antioxidant activity is characterized by electron paramagnetic resonance involving •DPPH and ABTS•+ assays.
19

Synthese, spektroskopische Charakterisierung und Untersuchung des elektrochromen Verhaltens der Diphthalocyanine des Dysprosiums, Holmiums, Erbiums, Thuliums und Ytterbiums

Graehlert, Xina 04 July 1997 (has links)
Die Diphthalocyanine der Seltenerdmetalle werden durch Reaktion von Seltenerdmetallacetat mit o-Phthalsaeuredinitril hergestellt. Die Diphthalocyanine existieren in zwei Formen, die sich in der Existenz eines delokalisierten freien Elektrons (Radikalform) oder eines ¨zusaetzlichen¨ Wasserstoffatoms unterscheiden. Die Charakterisierung der beiden Diphthalocyaninformen erfolgt mittels der IR-Spektroskopie und UV/VIS/NIR-Spektroskopie. Detailliert wird das spektroskopische Verhalten der Diphthalocyanine in unterschiedlichen Loesungsmitteln untersucht. ESR-spektroskopisch ist das freie Elektron der Radikalform nachweisbar. Zur Untersuchung des elektrochromen Verhaltens der Diphthalocyanine werden Schichten durch Sublimationsverfahren oder durch LB-Technik hergestellt. Die Analyse der Schichtstruktur erfolgt mittels HRTEM. Das elektrochrome Verhalten wird unter Beruecksichtigung des Schichtherstellungsverfahrens, der Diphthalocyaninform und der Art des verwendeten Elektrolyten untersucht. Die beobachteten Farbaenderungen reichen von violett, blau, gruen, blass-gelb, orange nach rot. Die entsprechenden UV/VIS-Spektren werden im Zusammenhang mit den ablaufenden Oxidations- und Reduktionsreaktionen diskutiert.
20

The Mobilization of Actinides by Microbial Ligands Taking into Consideration the Final Storage of Nuclear Waste - Interactions of Selected Actinides U(VI), Cm(III), and Np(V) with Pyoverdins Secreted by Pseudomonas fluorescens and Related Model Compounds (Final Report BMBF Project No.: 02E9985)

Glorius, M., Moll, H., Bernhard, G., Roßberg, A., Barkleit, A. January 2009 (has links)
The groundwater bacterium Pseudomonas fluorescens (CCUG 32456) isolated at a depth of 70 m in the Äspö Hard Rock Laboratory secretes a pyoverdin-mixture with four main components (two pyoverdins and two ferribactins). The dominant influence of the pyoverdins of this mixture could be demonstrated by an absorption spectroscopy study. The comparison of the stability constants of U(VI), Cm(III), and Np(V) species with ligands simulating the functional groups of the pyoverdins results in the following order of complex strength: pyoverdins (PYO) > trihydroxamate (DFO) > catecholates (NAP, 6­HQ) > simple hydroxamates (SHA, BHA). The pyoverdin chromophore functionality shows a large affinity to bind actinides. As a result, pyoverdins are also able to complex and to mobilize elements other than Fe(III) at a considerably high efficiency. It is known that EDTA may form the strongest actinide complexes among the various organic components in nuclear wastes. The stability constants of 1:1 species formed between Cm(III) and U(VI) and pyoverdins are by a factor of 1.05 and 1.3, respectively, larger compared to the corresponding EDTA stability constants. The Np(V)-PYO stability constant is even by a factor of 1.83 greater than the EDTA stability constant. The identified Np(V)-PYO species belong to the strongest Np(V) species with organic material reported so far. All identified species influence the actinide speciation within the biologically relevant pH range. The metal binding properties of microbes are mainly determined by functional groups of their cell wall (LPS: Gram-negative bacteria and PG: Gram-positive bacteria). On the basis of the determined stability constants raw estimates are possible, if actinides prefer to interact with the microbial cell wall components or with the secreted pyoverdin bioligands. By taking pH 5 as an example, U(VI)-PYO interactions are slightly stronger than those observed with LPS and PG. For Cm(III) we found a much stronger affinity to aqueous pyoverdin species than to functional groups of the cell wall compartments. A similar behavior was observed for Np(V). This shows the importance of indirect interaction processes between actinides and bioligands secreted by resident microbes.

Page generated in 0.0313 seconds