• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 15
  • 14
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 149
  • 149
  • 42
  • 26
  • 26
  • 23
  • 18
  • 17
  • 16
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Physiological and molecular responses of the marine oligotrophic ultramicrobacterium Sphingopyxis Alaskensis rb2256 to visible light and ultraviolet radiation

Matallana Surget, Sabine-Astrid, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2009 (has links)
Ultraviolet radiation reaching the Earth’s surface (UVR, 280-400 nm) may penetrate deep into the clear oligotrophic waters influencing a large part of the euphotic layer. Marine heterotrophic bacteria at the surface of the oceans are especially sensitive to the damaging solar radiation due to their haploid genome with little or no functional redundancy and lack of protective pigmentation. In a context of climate change and ozone depletion, it is clearly important to understand the physiology and underlying molecular UVR responses of abundant marine bacteria species. We chose the marine ultramicrobacterium Sphingopyxis alaskensis as a reference species to study the impact of solar radiation due to its numerical abundance in oligotrophic waters and its photoresistance, previously reported. For this purpose, we focused on the formation of the two major UVB-induced DNA photoproducts (CPDs and 6-4PPs) as well as the differential protein expression under solar radiation. We first demonstrated that the GC content of prokaryotic genome had a major effect on the formation of UVB-induced photoproducts, quantified by HPLC-MS/MS. Due to its high GC content, S. alaskensis presented a favoured formation of highly mutagenic cytosine-containing photoproducts and therefore would be more susceptible to UVinduced mutagenesis. By comparing S. alaskensis to another marine bacterium Photobacterium angustum, we observed for the latter strain a remarkable resistance to high UVB doses associated with a decrease in the rate of formation of CPDs explained by a non-conventional activity of photolyase. We also demonstrated that DNA damage in S. alaskensis was markedly modulated by growth temperature and time spent in stationary phase. In order to assess the effects that environmental UV-R had on regulatory networks and pathways of S. alaskensis, and determine how the cell’s physiology was affected, a quantitative proteomics investigation was performed. Changes in proteome were analyzed, with the recent and powerful mass spectrometry based approach using iTRAQ methodology. Approximately, one third of the proteome of S. alaskensis was identified, with 119 statistically and significantly differentially abundant proteins. Cellular processes, pathways and interaction networks were determined and gave us unique insight into the biology of UV response and adaptation of S. alaskensis.
22

Synthesis of iron doped titania and its application in degradation of organic pollution in water

Moradi, Vahid 15 January 2018 (has links)
Anatase TiO2 has attracted a lot of attention due to its applications as a photocatalyst in water and air treatment technologies. However, its large band gap energy (⁓3.2 eV) limits its application only to UV light. Also, anatase TiO2 suffers from high electron/hole recombination, which diminishes its photocatalytic activity. Therefore, different methods have been employed to decrease its band gap energy and reduce the recombination of the charge carriers. One of the methods is to incorporate impurities as dopants in its crystal lattice. Different metal and non-metal dopants have been studied for this aim. Among the different choices, Fe3+ has showed a great potential to improve the photocatalytic activity of TiO2 under visible light irradiation. Firstly, the d orbitals of Fe3+ interact with the 3d orbitals of Ti4+ generating intermediate band gap energy levels to facilitate excitation of electrons under visible light by a red shift in the absorption of light. Secondly, Fe3+ can interact with both electrons and holes to produce Fe2+ and Fe4+ trapping the charge carriers and reducing their recombination rate. Fe2+ and Fe4+ can release the electron and hole and revert back to the Fe3+. The released charge carriers migrate to the surface of the nanoparticles to initiate the photocatalytic reactions. However, it was found that the photocatalytic activity of Fe-TiO2 is not as high as expected. Therefore, in this research study I investigated the cause for its low photocatalytic activity and found methods to improve it. The Fe-TiO2 was synthesized using a facile sol-gel method and its structure and properties were characterized by different instrumental techniques. Using TEM and HRTEM an amorphous layer was seen on the surface of the nanoparticles. This layer characterized using XPS and EDX was composed of iron oxide layers. This layer was contaminating the surface of the nanoparticles where the photocatalytic reactions take place. Moreover, the contamination layer was acting as a recombination center for the electrons and holes. To the best of our knowledge, no previous study was conducted to investigate the effect of an iron oxide contamination layer on the photocatalytic activity of Fe-TiO2 nanoparticles. This layer was removed using a concentrated HCl solution confirmed using HRTEM and XPS. Also, using DRS it was shown that its removal does not effect the optical properties of the Fe-TiO2 confirming that the acid treatment process did not influence the doped Fe3+ in the TiO2 crystal lattice. The degradation of methelyne orange (MO), a representative pollutant, was increased from 25% to 98% under visible light irradiation. Also, in order to achieve the highest performance of the photocatalyst, it was necessary to study the parameters of the photocatalytic activity and the degradation efficiency. Therefore, experiments using a phenol solution, another representative pollutant, were conducted to investigate and optimize the effects of the catalyst load, reaction time, initial concentrating of the pollutant and pH. The degradation efficiency of the phenol solution was found to increase from 31% to 57% by the removal of the contamination layer and by controlling the pH of the solution. / Graduate
23

Preparation and Optimization of Novel Visible-Light-Active Photocatalysts for Waste-Water Treatment

Ran, Rong January 2016 (has links)
Photocatalysis is a series of advanced light-induced redox reaction processes resulting in the degradation and mineralization of organic pollutants in the presence of oxygen and water. Due to their capability to destroy contaminants under mild conditions, photocatalytic processes have attracted considerable attention in the field of waste-water treatment. However, photocatalytic reactions using the traditional TiO2 photocatalyst suffer from low energy efficiencies under solar irradiation. This low efficiency in the utilization of solar energy lies in its incapability in absorbing visible lights and also the high recombination rate of photo-excited species in photocatalysts. In addition, difficulties in the separation of fluids from micro- or nano-scale catalysts in large scale systems substantially impact cost efficiency in practice. In this thesis, strategies are explored which address these issues in order to improve the feasibility of solar photocatalysis. Two branches of photocatalytic transition metal-oxide semiconductor materials are investigated, namely bismuth-based and silver-based multi-phase heterogeneous photocatalysts. This research is focused on the design of visible-light-active metal-oxide photocatalysts to increase the absorption of visible light and to decrease the rates of electron-hole recombination, resulting in a high photocatalytic efficiency in regards to the degradation of organic pollutants. BiVO4 powder, synthesized from freshly made potassium metavanadate was prepared via hydrothermal treatment, characterized and experimentally investigated for the degradation of rhodamine B under visible light irradiation. The crystal structures and the specific surface areas of the composites, based on BiVO4 single phase crystal structures, are discussed. A multi-phase silver species (Ag2O/Ag3VO4/Ag4V2O7) photocatalyst was synthesized by adjusting the molar ratio of silver to vanadium (Ag to V) via hydrothermal method. The stabilities of as-prepared silver species composites regarding crystal structural changes due to photocatalytic reactions are investigated. Multi-phase silver species composites assisted with graphene oxide (GO-Ag2O/Ag3VO4/AgVO3) were synthesized at room temperature, and exhibited high visible-light photocatalytic activities regarding the degradation of model organic pollutants. The effect of graphene oxide addition on the photoactivity and on the photocorrosion of silver species composites under VLI is explored. The synergistic roles of each individual phase incorporated into the multi-phase composites are discussed regarding the photocatalytic performance.
24

Fabrication and Characterization of GaN-Based Superluminescent Diode for Solid-State Lighting and Visible Light Communication

Alatawi, Abdullah 04 1900 (has links)
To date, group-III-nitride has undergone continuous improvements to provide a broader range of industrial applications, such as solid-state lighting (SSL), visible light communications (VLC), and light projection. Recently, VLC has attained substantial attention in the field of wireless communication because it offers ~ 370 THz of bandwidth of unregulated visible spectrum, which makes it a critical factor in the evolution of the 5G networks and beyond. GaN-based light-emitting diode (LED) and laser diode (LD) have become increasingly appealing in energy-sufficient SSL replacing conventional light sources. However, III- nitride LEDs suffer from efficiency-droop in their external quantum efficiency associated with high current densities, and their modulation bandwidth is limited to 10 ~ 100 MHz. Although LDs have shown gigabit-modulation bandwidth, unfavorable artifacts, such as speckles are observed, which may raise a concern about eye safety. This dissertation is devoted to the fabrication and electrical and optical characterization of a new class of III-nitride light-emitter known as superluminescent diode (SLD). SLD works in an amplified spontaneous emission (ASE) regime, and it combines several advantages from both LD and LED, such as droop-free, speckle-free, low-spatial coherence, broader emission, high-optical power, and directional beam. Here, SLDs were fabricated by a focused ion beam by tilting the front facet of the waveguide to suppress the lasing mode. They showed a high-power of 474 mW on c-plane GaN-substrate with a large spectral bandwidth of 6.5 nm at an optical power of 105 mW. To generate SLD- based white light, a YAG-phosphor-plate was integrated, and a CRI of 85.1 and CCT of 3392 K were measured. For the VLC link, SLD showed record high-data rates of 1.45 Gbps and 3.4 Gbps by OOK and DMT modulation schemes, respectively. Additionally, a widely single- and dual-wavelength tunability were designed using SLD-based external cavity (SLD-EC) configuration for a tunable blue laser source. These results underscore the practicality of c-plane SLDs in realizing high-power, high data rate, speckle-free, and droop-free SSL-VLC apparatus. Additionally, the SLD-EC configuration allows a wide range of applications, including biomedical applications, optical communication, and high-resolution spectroscopy.
25

Noninvasive Preincubation Sex Determination and Monitoring of Sex-Specific Early Embryonic Growth Rate in Chicken Eggs Using Longitudinal Visible Transmission Spectroscopy / 長軸方向の可視透過分光法を用いたインキュベーション前の非侵襲雌雄判定と性特異的な初期鶏胚成長率のモニタリング

AFZAL, RAHMAN 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第22781号 / 農博第2424号 / 新制||農||1081(附属図書館) / 学位論文||R2||N5301(農学部図書室) / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 近藤 直, 准教授 小川 雄一, 教授 飯田 訓久 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
26

Facile synthesis of Ag/AgCI/BiOCI composite Z-scheme photocatalyst for visible-light-driven pollutant removal

Adenuga, Dorcas Oluyemisi January 2019 (has links)
Degradation of organic contaminants in wastewaters emanating from industrial processing plants could render the water streams reusable for the purpose of reducing water consumption while protecting the environment from harmful pollutants. Organic pollutants can be removed from water using biological processes that mineralise the organics to H2O and CO2. However, mineralisation by biological processes take a long time and in many cases, total mineralisation is impossible to achieve. Alternatively, organics can be completely degraded and mineralised rapidly using chemical and/or photocatalytic advanced oxidation processes (AOP). Both systems have some short comings. In chemical AOP such as Fenton and photo-Fenton reagents, the chemical agents used remain in the water as pollutants requiring further removal. In photocatalytic oxidation processes, most current technologies use UV light as an energy source. The chemical processes are environmentally incompatible, whereas, the “green” photocatalysis is extremely expensive due to the consumption of electricity by high pressure UV light. Forerunner investigators of photocatalysis utilised TiO2 as the photocatalyst of choice. It has major drawbacks of which the most important one is that it is only activated under ultraviolet (UV) light irradiation. This high energy consumption made the process practically unfeasible. Solar energy (natural light and heat from sun) has great prospects with regards to acting as a substitute for UV since it is a renewable and cheaper energy source. This work therefore investigated the development of a heterogeneous all-solid-state Z-scheme silver/ silver chloride/ bismuth oxychloride (Ag/AgCl/BiOCl) photocatalyst that is able to utilise natural light through being activated by visible light irradiation. This will successfully serve as a green alternative in the use of renewable energy for pollution reduction while saving energy. The synthesised photocatalysts were characterised using various techniques. The purity and crystallinity of the synthesised photocatalysts were determined using x-ray diffraction (XRD) while x-ray photoelectron spectroscopy (XPS) was used to determine the elemental composition and chemical states present in the synthesised catalysts as well as confirm the presence of elemental Ag. Fourier-transform infrared spectroscopy (FTIR) specified the functional groups present while the morphology and chemical composition were determined on a scanning electron microscopy (SEM)/ energy dispersive x-ray spectroscopy (EDS). The surface area and pore size were measured on a Brunauer-Emmett-Teller (BET) and thermogravimetric analysis (TGA) was done to determine the thermal degradation of synthesised particles. Ultraviolet-visible spectroscopy (UV-VIS) was done to determine the photoabsorption range and bandgap of the particles as efficiency of photocatalysis is dependent on the properties and morphology of the semiconductor material. Degradation studies were carried out under both visible and UV light irradiation in a batch reactor. The activity of the synthesised Ag/AgCl/BiOCl photocatalyst was compared to that of commonly used TiO2. Specifically, while 60% degradation was achieved under UV light irradiation by both TiO2 and Ag/AgCl/BiOCl photocatalyst, in visible light irradiation, TiO2 measures only 14% in 4 h while Ag/AgCl/BiOCl measures a photodegradation efficiency of 53%. Other factors such as initial organic contaminants concentration, initial catalyst concentration, pH effects and individual compounds effect were also investigated. The reusability of the catalyst was also reported showing stability of the synthesised catalyst as after a total irradiation time of 48 h, 65% phenol degradation was measured. The phenol degradation kinetics were found to fit the widely used first-order Langmuir-Hinshelwood model. The result from the current study proves the feasibility of a novel process for mineralisation of organic compounds in water under cost effective visible light irradiation for the removal of recalcitrant and refractory organics from water. / Dissertation (MEng)--University of Pretoria, 2019. / Chemical Engineering / MEng / Unrestricted
27

Experimental Robotic Platform for Programmable Self-Assembly

Coronado Preciado, Angelica 07 1900 (has links)
Programmable self-assembly has been widely studied because of its capability to create ordered patterns from a group of multiple disordered agents without an external controller. To achieve this, assembly units must exhibit different characteristics: they need to be small, to have the ability to latch and unlatch, and low-power consumption. In addition, they need to be easily programmable and able to communicate with each other. This thesis presents an experimental robotic platform for programmable self-assembly. In this work, we build in the Usbot modular robotic cubes making use of their advantages and simplicity as its passive magnetic latching mechanism, and we endow them with communication capabilities. The system allows only local communication between the modules, specifically with the most recent linked neighbor cube. The transmission of the relevant cube data is performed by a pair of LED and ambient light sensors in a binary format. The different experiments demonstrate and compare distributed programmable self-assembly using various algorithms from the literature as Singleton and Lynchpin.
28

Radical mediated heterocycle functionalization: methodology development and natural product synthesis

Furst, Laura 23 September 2015 (has links)
Substituted heterocycles are common building-blocks for biologically relevant molecules and represent challenging synthetic targets. Due to limited methods available for their preparation and derivatization, direct C-H functionalization protocols offer considerable advantages. Radical chemistry has shown great potential in this regard; however traditional approaches are unattractive due to poor selectivity and harsh reaction conditions. Visible light photoredox catalysis, on the other hand, is a mild alternative for alkyl radical generation and has proven its utility in organic synthesis. The work encompassed in this thesis details the efforts towards the development of practical photoredox-based functionalizations of heterocycles. Specific focus is placed upon overcoming obstacles pertaining to H-atom abstraction, back electron transfer, and redox strength of photocatalysts to achieve efficient C-Br bond reductions, amine oxidations, and C-C bond formations. In pursuit of these objectives, a C2-selective malonation of indoles and other electron-rich heteroarenes was accomplished in high yields using photocatalyst Ru(bpy)3Cl2, p-CH3OC6H4NPh, and blue LEDs as the light source. Use of a triarylamine over a trialkylamine suppressed H-atom abstraction and promoted C-C bond formation. Subsequent exploitation of the reductive quenching cycle of Ru(bpy)3Cl2 and use of Cl3CBr as an alternative oxidant led to an oxidative nucleophilic trapping of tetrahydroisoquinolines to provide a diverse set of analogues. Finally, photoredox catalysis was utilized for the creation of C-C bonds in the context of complex molecule synthesis. A variety of bromopyrroloindolines and indoles were coupled to furnish C3-C3' and C3-C2' bisindole alkaloids, which was successfully applied to the total synthesis of gliocladin C and related analogues. Moreover, fine-tuning of the redox cycle with photocatalyst Ir(ppy)2(dtbbpy)PF6 and LiB(cat)2 as the reductive quencher enabled the coupling less-reactive substrates and suppression of back electron transfer.
29

Base- and Visible Light-Promoted Activation of Aryl Halides under Transition-Metal-Free Conditions: Applications and Mechanistic Studies

Pan, Lei 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Aromatic rings are universal motifs in natural products, pharmaceuticals, agrochemicals, and wide variety of organic materials. Aromatic halides are widely used as synthetic precursors in all these applications. Therefore, tremendous effort has been devoted to activate aryl halides in the past decades. The common methods to activate aryl halides require the use of transition- metals either in the form of Grignard reagents or through the use of transition-metal catalysis. Over the past decade, photoredox catalysis has attracted significant attention as a cogent tool to develop greener synthetic processes and enable new molecular activation pathways under mild conditions. The most common of these approaches uses a photoredox/nickel dual catalytic cycle. While this technology has greatly expanded the toolbox of organic chemists, this method still requires expensive rare-metal-based catalyts. Herein, we present a series of visible light-induced methods that are transition-metal-free. These new base-promoted transformations and their mechanistic work will be discussed in the following order: We will first present our discovery that the dimsyl anion enables visible-light-promoted charge transfer in cross-coupling reactions of aryl halides. This work was applied to the synthesis of unsymmetrical diaryl chalcogenides. This method has a broad scope and functional group tolerance. An electron-donor-acceptor (EDA) complex between a dimsyl anion and the aryl halide is formed during the reaction and explains the observed aryl radical reactivity observed. Then, a visible-light-induced borylation and phosphorylation of aryl halides under mild conditions was developed. Inspired by the mechanistic breakthroughs observed in the previous work. The mechanism of this reaction also involves an aryl radical that is presumed to be formed also via an EDA complex. In other work, a photo-induced phosphonation of ArI using N,N- diisopropylethylamine (DIPEA) and trialkyl phosphites was developed. This method uses very mild conditions, which allowed the preparation a wide variety of functionalized aromatic phosphonates derivatives, including natural products and medicinal compounds. Finally, a photochemical amination of amides was developed via a C(sp 3 )–H bond functionalization process under visible light irradiation. This reaction showed good functional group compatibility without the use of external radical initiators, strong oxidants, or heat source. An EDA complex between N-bromophthalimide and LiOtBu is formed during the reaction.
30

Studies on Transparent, Highly Porous Materials Based on Organopolysiloxanes / 有機ポリシロキサン系透明高気孔率材料に関する研究

Shimizu, Taiyo 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20198号 / 理博第4283号 / 新制||理||1615(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)准教授 中西 和樹, 教授 北川 宏, 教授 島川 祐一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM

Page generated in 0.0514 seconds