• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 15
  • 14
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 149
  • 149
  • 42
  • 26
  • 26
  • 23
  • 18
  • 17
  • 16
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Design of novel semiconductor photocatalysts and cocatalysts toward efficient water splitting under visible light / 高効率可視光水分解を目指した新規半導体光触媒および助触媒の設計

Suzuki, Hajime 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21119号 / 工博第4483号 / 新制||工||1697(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 阿部 竜, 教授 安部 武志, 教授 陰山 洋 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
32

Development of Photoelectrodes of Visible Light Responsive Semiconductors Loaded on Carbon Microfiber Felts with Three-dimensional Structure for Efficient Water Splitting / 三次元構造炭素繊維布を導電基材とする高効率可視光水分解用光電極の開発

Homura, Hiroya 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21775号 / 工博第4592号 / 新制||工||1715(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 阿部 竜, 教授 作花 哲夫, 教授 安部 武志 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
33

Solar- and visible light-activated titania for removal of pesticides and emerging contaminants: Synergies, intermediates, and reusability

Andersen, Joel M. January 2013 (has links)
No description available.
34

SPATIAL OPTICAL ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING FOR INDOOR VISIBLE-LIGHT COMMUNICATION SYSTEMS

Mossaad, Mohammed January 2021 (has links)
Radio frequency (RF) spectrum congestion motivates the search for alternative communication techniques to complement radio systems. Visible light communications (VLC) is an emerging technology that exploits the recent and ever-growing increase in the usage of energy-efficient light emitting diodes (LEDs) to imperceptibly modulate the optical power output of LEDs to enable communication and augment RF networks. Orthogonal frequency-divison multiplexing (OFDM) has been proposed as a modulation scheme for VLC due to its high spectral efficiency, ease of channel estimation and equalization, resistance to inter-symbol interference (ISI) and frequency-selective fading, efficient implementation using the Fast Fourier Transform (FFT), and compatibility with RF and power-line communication (PLC) standards that use OFDM. One of the major drawbacks of conventional OFDM techniques is the high peak-to-average power ratio (PAPR) of OFDM signals. The peaks of the OFDM signals are clipped due to the limited dynamic range of the LED, which translates the high PAPR of the OFDM signal into non-linear distortion (NLD). This signal distortion causes bit-error rate (BER) performance degradation, especially at high optical signal-to-noise ratios (SNRs) typical of indoor VLC scenarios. In this thesis, a new family of modulation techniques, termed spatial optical OFDM (SO-OFDM), is proposed with the aim of reducing the PAPR of conventional DC-biased optical OFDM (DCO-OFDM) by making use of the large number of LEDs typically available in indoor lighting settings. Each LED group signal is a narrowband signal consisting of a small number of subcarriers, and thus has a smaller PAPR than the original OFDM signal. Firstly, SO-OFDM is introduced and its two key concepts of frequency-to-space mapping and spatial summing are explained. Frequency-to-space mapping is achieved by allocating a subset of OFDM subcarriers to each LED. Each LED group signal is a narrowband signal consisting of a small number of subcarriers, and thus has a smaller PAPR than the original OFDM signal. Several design variations of the subcarrier assignment to LEDs are introduced and are shown through simulations, to reduce PAPR, and NLD noise due to clipping, and improve the BER performance at high SNRs as compared to DCO-OFDM. In addition, luminous efficacy is identified as an important lighting design parameter that is impacted by modulation. Relative luminous efficacy is defined as the ratio of the luminous efficacy of a modulated LED to that of an LED driven by a DC signal, and is introduced as a metric to assess the impact of modulation on LED lighting. Relative luminous efficacy links communication parameters such as signal variance to lighting design requirements. Secondly, a low-complexity amplify-and-forward (AF) scheme is proposed for an integrated power-line communication/visible-light communication (PLC/VLC) where SO-OFDM is used for the VLC link. Frequency translation of the incoming PLC signal is used to increase the usable bandwidth of the LED. The use of both frequency translation and SO-OFDM leads to capacity gains over DCO-OFDM in the high SNR regime. Finally, a low-complexity variant of SO-OFDM, termed square-wave SO-OFDM (SW-SO-OFDM), is proposed. Square-wave SO-OFDM uses square-wave carriers instead of sinusoidal waves to modulate a single OFDM subcarrier signal per LED. By using square-wave carriers, SW-SO-OFDM eliminates the need for digital-to-analog converters (DACs), digital predistortion (DPD), and the FFT operation. Squarewave SO-OFDM is also shown, through simulations, to achieve BER performance gains over SO-OFDM and DCO-OFDM. In addition, an experimental demonstration of SW-SO-OFDM with 64 QAM modulation on subcarriers is described. / Thesis / Doctor of Philosophy (PhD) / Visible-light communications (VLC) is an emerging technology that exploits the increasingly widespread use of light-emitting diodes (LEDs) for indoor lighting, and modulates the optical power output of the LED for data transmission. Among the various modulation techniques that have been proposed for VLC, orthogonal frequency-division multiplexing (OFDM) offers high data rates, resistance to channel impairments, and simple channel estimation and equalization. However, OFDM signals suffer from a high peak-to-average power ratio (PAPR) which degrades the efficiency of the power amplifier in the transmitter and hinders the communication performance. In this thesis, a new multiple-LED modulation technique, termed spatial optical OFDM (SO-OFDM), is proposed to reduce the PAPR. Using a frequency-to-space mapping, SO-OFDM divides the wideband high-PAPR OFDM signal into multiple narrowband low-PAPR signals and assigns each signal to a group of LEDs. Spatial summing of the transmitted signals occurs at the receiver allowing for the use of a conventional OFDM receiver. Several variations of SO-OFDM are introduced and are shown, using simulations, to reduce the PAPR, combat non-linear distortion (NLD), and improve the bit-error rate (BER) performance at high signal-to-noise ratios (SNRs), typical of VLC systems. Spatial optical OFDM is also applied to a practical scenario where its PAPR reduction capability is used to improve the overall capacity of a proposed system that integrates power-line communication (PLC) and VLC. A low-complexity variant of SO-OFDM, that uses square-wave carriers and simplifies the transmitter design by eliminating the need for digital predistortion (DPD) and digital-to-analog converters (DACs) is also proposed, and tested experimentally.
35

Synthesis and characterization of nitrogen-doped titanium oxide nanoparticles for visible-light photocatalytic wastewater treatment

Pelaschi, Mohammad Ali 05 October 2018 (has links)
TiO2 nanoparticles are one of the most suitable materials for photocatalysis, specifically for water and air treatment and removal of a wide variety of organic pollutants such as dyes, aromatic compounds, and chlorinated aromatic compounds. Methods of synthesis of TiO2 are generally categorized in two main classes of wet chemical, and dry methods. Wet chemical methods generally provide a better control over size, size distribution, and shape; all of which significantly affect photocatalytic performance of the produced nanoparticles. Despite its advantages over other semiconductor photocatalysts, wide band-gap of titania restrains its photocatalytic activity to only UV light, which only makes up to 5% of the light reaching surface of the earth. To induce visible-light activity, titania has been doped by different dopants, including transition metal-dopants such as Fe, and Co and non-metal dopants such as N, and C. Nitrogen has been shown to be a better dopant, providing a suitably placed energy state within the band-gap of TiO2, and not suffering from issues related to transition-metal dopants such as low thermal and physical stability and high electron-hole recombination rates. To dope titania with nitrogen, one could add the nitrogen source together with other precursors during synthesis, referred to as wet chemical doping methods, or anneal the synthesized titania nanoparticles under a flow of ammonia at high temperatures, referred to as dry doping methods. While different doping methods have been studied individually, the author maintains that there has been an absence of research comparing the effectiveness of these methods, on photocatalytic performance of N-doped TiO2 within a consistent experiment. In this research TiO2 nanoparticles were synthesized by a facile, inexpensive sol-gel method, and doping was done by wet chemical methods, dry methods, and a combination of both these methods. Visible-light photocatalytic activity of these nanoparticles was evaluated by their efficiency in degradation of methyl orange. The results show wet doping methods increase the efficiency of titania nanoparticles more than dry doping, or combination of both. Further investigation showed that the main reason for higher activity of wet chemically doped nanoparticles is due to their higher available surface area of 131.7 m2.g-1. After normalizing the available surface area, measured by the BET method, it was shown that a combination of wet chemical doping, and dry doping at 600 °C result in the most active nanoparticles, but high temperature dry doping severely decreases the surface area, lowering the overall efficiency of the product. Additionally, N-doped TiO2 nanoparticles were synthesized using a simple hydrothermal method, in which the nitrogen source was used not only to dope, but also to control shape, size, size distribution, and morphology of the titania nanoparticles, and to induce aqueous colloidal stability. It was shown that addition of triethylamine during the synthesis, results in ultra-small, colloidally stable, cubic TiO2 nanoparticles, while using triethanolamine results in formation of TiO2 pallets, assembled into spherical, rose-like structures. The synthesized nanoparticles show impressive efficiency in visible-light removal of phenol, 4-chlorophenol, and pentachlorophenol, achieving 100% degradation of a 100-ppm phenol solution in 90 min, more than 98% degradation of a 20-ppm 4-chlorophenol solution in 90 min, and 97% degradation of a 10-ppm pentachlorophenol in 180 min with 500 ppm loading of the catalyst in all cases. Moreover, synthesized nanoparticles showed no sign of deactivation after 5 consecutive runs, removing 4-chlorophenol, showing their reusability. / Graduate
36

Signal Processing Techniques for Optical Wireless Communication Systems / Technique du traitement de signal pour les systemes de communication optique san fil

Azim, Ali Waqar 18 September 2018 (has links)
Le spectre radiofréquence (RF) diminue en raison d'une augmentation de la demande d'applications sans fil. Par conséquent, il existe une demande importante de régions de spectre alternatifs pour les communications afin d'incliner le spectre RF conventionnel. Dans ce contexte, les communications optiques sans fil (OWC) sont explorées comme un candidat potentiel pour compléter les communications RF. Le travail actuel se concentre sur les techniques d'atténuation des déficiences et les approches de modulation efficaces en énergie pour OWC. Dans un premier temps, on étudie le rapport de puissance crête à moyenne (PAPR) pour le multiplexage par répartition orthogonale de la fréquence optique (O-OFDM) et on présente deux techniques de réduction de PAPR orientées vers la décision. La complexité de ces méthodes est comparativement plus faible que celle des autres méthodes de réduction PAPR, tandis que leurs performances sont également analogues à celles des autres alternatives. Deuxièmement, une approche d'accès multiple par répartition en fréquence optique-porteuse unique (O-SCFDMA), appelée O-SCFDMA sans symétrie d'Hermitain (HSFO-SCFDMA) est proposée. Ce dernier évite la symétrie hermiatienne normalement attendue pour d'autres O-OFDM et Approches O-SCFDMA. Les résultats de la simulation affirment que HSFO-SCFDMA est plus efficace que toute autre approche O-SCFDMA pour OWC et manifeste le plus faible PAPR parmi les autres alternatives. Troisièmement, la performance du précodage est analysée pour l'O-OFDM (LACO-OFDM) asymétriquement en couches. Deux types de précodage sont utilisés, à savoir le précodage par transformée de Fourier et le précodage par transformée d'Hartley. Il est établi que le LACO-OFDM précodé a transformée Hartley présente le PAPR le plus faible et est moins vulnérable à la distorsion non linéaire introduite par les diodes électroluminescentes (LED), mais le rapport signale sur bruit (SNR) augmente ( électrique et optique à la fois) en raison de la structure en couches qui est plus élevée que le LACO-OFDM conventionnelle. / The radio-frequency (RF) spectrum is dwindling due to an increase in the demand of wireless applications. Hence, there is substantial demand of alternative spectrum regions for communications to recline the conventional RF spectrum. In this context, optical wireless communications (OWC) is explored as a likely candidate to supplement the RF communications. The current work focuses on impairment mitigation techniques and energy-efficient modulation approaches for OWC. Firstly, the peak-to-average power ratio (PAPR) for optical-orthogonal frequency division multiplexing (O-OFDM) is studied and two decision-directed PAPR reduction techniques are presented. The complexity of these methods is comparatively lower than other PAPR reduction methods, whilst, their performance is likewise analogous with other alternatives. Secondly, an optical-single-carrier frequency division multiple access (O-SCFDMA) approach, referred to as Hermitain symmetry free O-SCFDMA (HSFO-SCFDMA) is proposed, that averts Hermiatian symmetry which is normally expected for other O-OFDM and O-SCFDMA approaches. The simulation results affirm that HSFO-SCFDMA is more efficient than any other O-SCFDMA approach for OWC and manifests the lowest PAPR among the other alternatives. Thirdly, the performance of precoding is analyzed for layered asymmetrically clipped O-OFDM (LACO-OFDM). Two types of precoding are employed, i.e., Fourier transform precoding and Hartley transform precoding. It is established that Hartley transform precoded LACO-OFDM exhibits the lowest PAPR and is less vulnerable to non-linear distortion introduced by the light emitting diodes (LEDs), howbeit, the signal-to-noise ratio (SNR) increase (both electrical and optical) owing to the layered structure is higher than conventional LACO-OFDM.
37

Visible-Light-Responsible Co-Catalysts Enhanced by Graphene for Solar Energy Harvesting

Ying, Chen 01 April 2016 (has links)
This study focuses on the visible light response of hetero-structures of TiO2-graphene- MoS2 for solar energy harvestings. The commercial P25 TiO2 nano-particles, and selfprepared layered reduced graphene oxides (RG) and MoS2 were assembled for the targeted hetero-structure materials as visible-light responsible solar harvesting cocatalysts. The hydrothermal method was applied for nano-material synthesis, the reduction of graphene oxides, and bonding formation. Multiple characterization methods (SEM-TEM, XRD, XPS, UV-VIS, PL, FT-IR, TGA) have been applied to understand the electron-hole pair separation and recombination, and performance tuning in their visible-light photo-catalysis rhodamine B (Rh.B) degradations process Compared to TiO2, an obvious red shift of light absorption (from 3.1 eV to 2.6 eV) of the as-prepared RG-TiO2 was observed by UV-vis analysis, and an enhanced photocatalytic degradation of the Rhodamine B (Rh.B) using the as-prepared RG-TiO2 was also observed in a Xe lamp exposure test. The explication of these two approaches to photocatalytic improvements were concluded as the energy gap changing, the formation of Ti-O-C chemical bonds between TiO2 and RG for charge transfer and the reduction of the band gap, as well as a likelihood of up-conversion photoluminescence mechanism (UCPL). The synthesis temperature was found to be critical factor to control binding formation and agglomeration of nano-materials. The lower and higher temperatures induced ineffective formations of preferable bonding structures and the significant agglomeration. The optimal synthesis temperature was found to be within 120 ℃-150 ℃ in the TiO2-RG system. For better understanding of the Ti-O-C bonding, a heterostructure of TiO2 nanotube arrays with GO (TNA-GO) was synthesized using the Langmuir-Blodgett (LB) assembly method. The band gap of this assemble was very close to the previous TiO2-RG synthesized below 120 ℃, which is very close to that of TiO2 nano-particles. This lead to the conclusion on the significance of the Ti-O-C bonding in the visible-light-responsible photo-catalysis solar harvestings. This study revealed the fundamental mechanisms on the bonding formations and the significant visible-light-response of hetero-structcures between commercial-available, inexpensive and non-toxic TiO2 and layered materials, such as the zero-band-gap graphene and the smaller-band-gap MoS2. This mechanisms understanding will greatly sustain applications of economical-effective and environmental-safe TiO2.
38

Multiple-input multiple-output optical wireless communications

Tran, Tuan-Anh January 2013 (has links)
Visible-light optical wireless communications (OWC) is a potential technology that can help resolve the crowdedness of the radio-frequency bands, whilst conveniently exploiting energy-saving light-emitting diodes (LEDs) as transmitters for both illumination and communications. Since there usually are many LEDs in a lighting unit, OWC has a multi- input multi-output (MIMO) geometry which, thanks to its channel diversity, can offer wireless local networks at data-rates many times higher than possible with single-channel systems. In such systems, MIMO-detection methods to separate the different optical channels play an important role in improving the system performance by helping reduce cross-talk between channels. To measure the performance of a particular geometry for MIMO communications, a simulation study, reported in this thesis, found that, amongst the signal- independent metrics, the condition number may be used as a rough predictor of the performance, whilst the channel Signal-to-Interference-and-Noise Ratio (SINR) is the most appropriate for geometry assessment. Combined with the fact that the overall performance of a MIMO system is mostly dominated by its worst channel, this indicates that the most effective way to improve the system performance is to maximise the worst channel’s SINR. One of the possible solutions to improving the SINRs is to use holograms to steer the transmitter images such that their distributions over the photo-detectors reduce overlaps. As LEDs emit partially-coherent light, the beam steering has to be carried out with partially- coherent illumination. By using two lenses to parallelise and collect partially-coherent light before and after the hologram, respectively, the source and image intensity distributions, and the autocorrelation of the hologram can be related in a succinct mathematical relationship. This leads to the development of three computational algorithms based on the autocorrelation function to obtain a quantised hologram with the desired beam-steering capability. These algorithms have their cost functions and performance comparison done at the hologram plane instead of the image plane, which therefore takes less time than traditional image-based methods. Specifically, one of these algorithms is able to save significant time over both the other autocorrelation-based algorithms and the direct binary-search, by 33% and by 50% respectively. A simulation-based study and a corresponding experiment, both reported in this thesis, found that the one of the proposed algorithms had poor power efficiency, whilst the other two were both highly effective in generating digital holograms with precise and power-efficient beam-steering performance. Of these two algorithms, one had superior time performance and was likely the best of the three proposed autocorrelation-based algorithms for generating beam-steering holograms. MIMO-OWC simulation also demonstrated the capability of using beam-steering holograms to design the channel and improve the system performance. Combining reported findings, a strategy can be devised to optimise the throughput of an imaging MIMO-OWC system for a given transmitted power.
39

Parallel reconfigurable single photon avalanche diode array for optical communications

Fisher, Edward Michael Dennis January 2015 (has links)
There is a pressing need to develop alternative communications links due to a number of physical phenomena, limiting the bandwidth and energy efficiency of wire-based systems or economic factors such as cost, material-supply reliability and environmental costs. Networks have moved to optical connections to reduce costs, energy use and to supply high data rates. A primary concern is that current optical-detection devices require high optical power to achieve fast data rates with high signal quality. The energy required therefore, quickly becomes a problem. In this thesis, advances in single-photon avalanche diodes (SPADs) are utilised to reduce the amount of light needed and to reduce the overall energy budget. Current high performance receivers often use exotic materials, many of which have severe environmental impact and have cost, supply and political restrictions. These present a problem when it comes to integration; hence silicon technology is used, allowing small, mass-producible, low power receivers. A reconfigurable SPAD-based integrating receiver in standard 130nm imaging CMOS is presented for links with a readout bandwidth of 100MHz. A maximum count rate of 58G photon/s is observed, with a dynamic range of ≈ 79dB, a sensitivity of ≈ −31.7dBm at 100MHz and a BER of ≈ 1x10−9. We investigate the properties of the receiver for optical communications in the visible spectrum, using its added functionality and reconfigurability to experimentally explore non-ideal influences. The all-digital 32x32 SPAD array, achieves a minimum dead time of 5.9ns, and a median dark count rate (DCR) of 2.5kHz per SPAD. High noise devices can be weighted or removed to optimise the SNR. The power requirements, transient response and received data are explored and limiting factors similar to those of photodiode receivers are observed. The thesis concludes that data can be captured well with such a device but more electrical energy is needed at the receiver due to its fundamental operation. Overall, optical power can be reduced, allowing significant savings in either transmitter power or the transmission length, along with the advantages of an integrated digital chip.
40

Battery-free Visible Light Sensing

Soleiman, Andreas January 2019 (has links)
In this thesis, we show that it is possible to design a battery-free light sensing system that can sense and communicate hand gestures while operating fully on harvested power from indoor light. We present two main innovations that push our system to tens of microwatts of power to enable battery-free operation. First, we introduce a novel visible light sensing system that can track variations in light intensity by using a solar cell as a sensor. Solar cells are unlike photodiodes optimized for energy yield in the visible light region and hence do not require any power hungry active components such as an operational amplifier. Furthermore, solar cells can operate under more diverse light conditions as they are not susceptible to saturation under bright light. Second, we devise two ultra-low power communication mechanisms based on radio frequency backscatter to transmit sensor readings at various resolutions without the need of any energy-expensive computational blocks.  We design two battery-free and self-powered hardware prototypes that are based on these two innovations. Our first design utilizes an on-board comparator based circuit to perform a 1-bit digitization of changes in light readings, consuming only sub-microwatt of power for digitization. For our second prototype, we design an analog backscatter mechanism that can map raw sensor readings directly to backscatter transmissions. We demonstrate the feasibility of our designs when sensing significant changes in light intensity caused by shadows from hand gestures, and reconstruct these at a receiving device. Our results demonstrate the ability to sense and communicate various hand gestures at a peak power of 20 microwatts when performing 1-bit digitization, and a mean power of 60 microwatts when performing analog backscatter. Both designs represent orders of magnitude improvement in terms of power consumption over state-of-the-art visible light sensing systems. / Battery-free Visible Light Sensing / MobiCom: G: Battery-free Visible Light Sensing

Page generated in 0.0492 seconds