• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 5
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 44
  • 44
  • 44
  • 10
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Bioprospecting for Improved Floral Fragrance in Wild Sunflower

Anandappa, Jason 01 January 2022 (has links) (PDF)
The cultivation of crop sunflower or Helianthus annuus is a 20 billion USD industry globally. Crop wild relatives of H. annuus have a long history of being used to breed improved traits into cultivated varieties. Cultivated H. annuus is not known to have a pleasant aroma, and at times seed yield is limited by pollination services, particularly in the production of hybrid seed. Improved floral fragrance could improve pollinator attraction and would add value to ornamental sunflowers in the context of the cut-flower industry. If volatile organic compounds that together generate favorable scents are present in wild Helianthus species, they could be bred into domesticated varieties. In order to assess the diversity of floral fragrance available in crop wild relatives, 30 diverse accessions of wild Helianthus as well as seven varieties of H. annuus spanning a domestication gradient were grown in a greenhouse experiment and variation in floral volatiles was analyzed by solid phase microextraction-gas chromatography-mass spectrometry. While alpha-pinene made up a significant portion of the volatiles emitted for most taxa, there was substantial diversity present across the genus. Most volatiles emitted were found to be monoterpenoids with a significant share of sesquiterpenoids. Several wild accessions such as H. debilis subsp. tardiflorus and H. praecox subsp. praecox as well as open-pollinated domesticated accessions of H. annuus show promise for breeding for improved floral fragrance due to high volatile abundance and likely favorable compound compositions.
12

Trace Contaminant Control: An In-depth Study Of A Silica-titania Composite For Photocatalytic Remediation Of Closed-environment Habitat Air

Coutts, Janelle 01 January 2013 (has links)
This collection of studies focuses on a PCO system for the oxidation of a model compound, ethanol, using an adsorption-enhanced silica-Ti02 composite (STC) as the photocatalyst; studies are aimed at addressing the optimization of various parameters including light source, humidity, temperature, and possible poisoning events for use as part of a system for gaseous trace-contaminant control system in closed-environment habitats. The first goal focused on distinguishing the effect of photon flux (i.e., photons per unit time reaching a surface) from that ofphoton energy (i.e., wavelength) of a photon source on the PCO of ethanol. Experiments were conducted in a bench-scale annular reactor packed with STC pellets and irradiated with either a UV -A fluorescent black light blue lamp O·max=365 nm) at its maximum light intensity or a UV -C germicidal lamp O.·max=254 nm) at three levels of light intensity. The STC-catalyzed oxidation of ethanol was found to follow zero-order kinetics with respect to C02 production, regardless of the photon source. Increased photon flux led to increased EtOH removal, mineralization, and oxidation rate accompanied by lower intermediate concentration in the effluent. The oxidation rate was higher in the reactor irradiated by UV -C than by UV-A (38.4 vs. 31.9 nM s-1 ) at the same photon flux, with similar trends for mineralization (53.9 vs. 43.4%) and reaction quantum efficiency (i.e., photonic efficiency, 63.3 vs. 50.1 nmol C02 ~mol photons-1 ). UV-C irradiation also led to decreased intermediate concentration in the effluent compared to UV -A irradiation. These results demonstrated that STC-catalyzed oxidation is enhanced by both increased photon flux and photon energy. The effect of temperature and relative humidity on the STC-catalyzed degradation of ethanol was also determined using the UV-A light source at its maximum intensity. Increasing ii temperature from 25°C to 65°C caused a significant decrease in ethanol adsorption (47.1% loss in adsorption capacity); minimal changes in EtOH removal; and ·a dramatic increase in mineralization (37.3 vs. 74.8%), PCO rate (25.8 vs. 53.2 nM s-1 ), and reaction quantum efficiency (42.7 vs. 82.5 nmol C02 J..Lmol phontons-1 ); intermediate acetaldehyde (ACD) evolution in the effluent was also decreased. By elevating the reactor temperature to 45°C, a -32% increase in reaction quantum efficiency was obtained over the use ofUV-C irradiation at room temperature; this also allowed for increased energy usage efficiency by utilizing both the light and heat energy of the UV-A light source. Higher relative humidity (RH) also caused a significant decrease (16.8 vs. 6.0 mg EtOH g STCs-1 ) in ethanol adsorption and dark adsorption 95% breakthrough times (48.5 vs.16.8 hours). Trends developed for ethanol adsorption correlated well with studies using methanol as the target VOC on a molar basis. At higher RH, ethanol removal and ACD evolution were increased while mineralization, PCO rate, and reaction quantum efficiency were decreased. These studies allowed for the development of empirical formulas to approximate EtOH removal, PCO rate, mineralization, and ACD evolution based on the parameters (light intensity, temperature, and RH) assessed. Poisoning events included long-term exposure to low-VOC laboratory air and episodic spikes of either Freon 218 or hexamethylcyclotrisiloxane. To date, all poisoning studies have shown minimal (0-6%) decreases in PCO rates, mineralization, and minimal increases in ACD evolution, with little change in EtOH removal. These results, while studies are still ongoing, show great promise of this technology for use as part of a trace contaminant control system for niche applications such as air processing onboard the ISS or other new spacecrafts.
13

A Comprehensive Tool and Analytical Pathway for Differential Molecular Profiling and Biomarker Discovery

Grigsby, Claude Curtis 20 December 2013 (has links)
No description available.
14

Chemometric Analysis of Volatile Organic Compound Biomarkers of Disease and Development of Solid Phase Microextraction Fibers to Evaluate Gas Sensing Layers

Woollam, Mark David 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Canines can detect different diseases simply by smelling different biological sample types, including urine, breath and sweat. This has led researchers to try and discovery unique volatile organic compound (VOC) biomarkers. The power of VOC biomarkers lies in the fact that one day they may be able to be utilized for noninvasive, rapid and accurate diagnostics at a point of care using miniaturized biosensors. However, the identity of the specific VOC biomarkers must be demonstrated before designing and fabricating sensing systems. Through an extensive series of experiments, VOCs in urine are profiled by solid phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS) to identify biomarkers for breast cancer using murine models. The results from these experiments indicated that unique classes of urinary VOCs, primarily terpene/terpenoids and carbonyls, are potential biomarkers of breast cancer. Through implementing chemometric approaches, unique panels of VOCs were identified for breast cancer detection, identifying tumor location, determining the efficacy of dopaminergic antitumor treatments, and tracking cancer progression. Other diseases, including COVID-19 and hypoglycemia (low blood sugar) were also probed to identify volatile biomarkers present in breath samples. VOC biomarker identification is an important step toward developing portable gas sensors, but another hurdle that exists is that current sensors lack selectivity toward specific VOCs of interest. Furthermore, testing sensors for sensitivity and selectivity is an extensive process as VOCs must be tested individually because the sensors do not have modes of chromatographic separation or compound identification. Another set of experiments is presented to demonstrate that SPME fibers can be coated with materials, used to extract standard solutions of VOCs, and analyzed by GC-MS to determine the performance of various gas sensing layers. In the first of these experiments, polyetherimide (PEI) was coated onto a SPME fiber and compared to commercial polyacrylate (PAA) fibers. The second experiment tuned the extraction efficiency of polyvinylidene fluoride (PVDF) - carbon black (CB) composites and showed that they had higher sensitivity for urinary VOC extraction relative to a polydimethylsiloxane (PDMS) SPME fiber. These results demonstrate SPME GC-MS can rapidly characterize and tune the VOC adsorption capabilities of gas sensing layers.
15

On-site Sample Preparation and Introduction to Ion Mobility Spectrometry

Wu, Jie January 2009 (has links)
Solid phase microextraction (SPME), needle trap device (NTD), and membrane extraction with a sorbent interface (MESI) are solvent-free sample preparation techniques that were developed to perform the rapid routine analysis of organic compounds (VOCs) in various environmental matrices by integrating sampling, extraction, preconcentration and sample introduction procedures into one step. A portable ion mobility spectrometry (IMS) analyzer has some advantages, such as small size, light weight, operability under ambient pressure, air as carrier gas, and sensitivity, all of which make IMS suitable for on-site monitoring for low concentration of analytes. The aforementioned sampling and preconcentration techniques were coupled with a portable IMS analyzer, as well as a thermal desorption unit that can accommodate SPME, NTD and MESI, which was modified and combined with IMS for on-site monitoring of volatile organic compounds (VOCs) from human breath and plant emissions. Experimental results demonstrated that low detection limits were achievable for gaseous analytes, (25 ng/L for acetone (SPME-IMS), 43 ng/mL (NTD-IMS) and 2.3 ng/mL (MESI-IMS) for α-pinene). These three analytical systems were applied for on-site rapid determination of acetone in human breath and α-pinene from plant emissions respectively. The salient features of these systems that make them suitable for on-site monitoring of volatile organic compounds in different sources are: small size, simple operation, fast and/or on-line sampling, rapid analysis.
16

On-site Sample Preparation and Introduction to Ion Mobility Spectrometry

Wu, Jie January 2009 (has links)
Solid phase microextraction (SPME), needle trap device (NTD), and membrane extraction with a sorbent interface (MESI) are solvent-free sample preparation techniques that were developed to perform the rapid routine analysis of organic compounds (VOCs) in various environmental matrices by integrating sampling, extraction, preconcentration and sample introduction procedures into one step. A portable ion mobility spectrometry (IMS) analyzer has some advantages, such as small size, light weight, operability under ambient pressure, air as carrier gas, and sensitivity, all of which make IMS suitable for on-site monitoring for low concentration of analytes. The aforementioned sampling and preconcentration techniques were coupled with a portable IMS analyzer, as well as a thermal desorption unit that can accommodate SPME, NTD and MESI, which was modified and combined with IMS for on-site monitoring of volatile organic compounds (VOCs) from human breath and plant emissions. Experimental results demonstrated that low detection limits were achievable for gaseous analytes, (25 ng/L for acetone (SPME-IMS), 43 ng/mL (NTD-IMS) and 2.3 ng/mL (MESI-IMS) for α-pinene). These three analytical systems were applied for on-site rapid determination of acetone in human breath and α-pinene from plant emissions respectively. The salient features of these systems that make them suitable for on-site monitoring of volatile organic compounds in different sources are: small size, simple operation, fast and/or on-line sampling, rapid analysis.
17

Degradação de compostos orgânicos voláteis em fase gasosa através da fotocatálise com luz UV, TiO2 e TiO2/Pt / Degradation of volatile organic compounds in gas phase by photocatalysis with UV Light, TiO2 and TiO2/Pt

Ponczek, Milena, 1986- 26 August 2018 (has links)
Orientador: Edson Tomaz / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-26T01:40:52Z (GMT). No. of bitstreams: 1 Ponczek_Milena_M.pdf: 3719180 bytes, checksum: efe8192ba2f868976819b64f089b973c (MD5) Previous issue date: 2014 / Resumo: Compostos orgânicos voláteis, ou COV, são uma importante classe de poluentes do ar comumente encontrados na atmosfera ao nível do solo, nos centros urbanos e industriais. O tratamento de COV provenientes de fontes industriais através da fotocatálise heterogênea é uma técnica eficiente para a degradação de baixas concentrações de uma grande gama de compostos orgânicos diferentes (hidrocarbonetos, aromáticos, alcóois, cetonas, etc) operando em condições ambientes. Um dos problemas que ainda impede sua aplicação industrial é a desativação do catalisador e por isso muitos grupos de pesquisa têm se dedicado ao estudo desta técnica na tentativa de melhorá-la e solucionar estes entraves. A atividade fotocatalítica do TiO2 pode ser melhorada pela adição de metais na sua superfície. Neste trabalho, preparou-se catalisadores de TiO2 por impregnação de Pt (1% m/m). A platina foi reduzida com NaBH4, fazendo-se posteriormente caracterização por DRX, XPS, UV ¿Vis, BET, Quimissorção de H2 e MEV/EDS para a validação do método de síntese. Todas as técnicas confirmaram que o método de redução com NaBH4 não modifica estruturalmente o TiO2, mantendo a sua cristalinidade e a razão de anatase/rutilo. A técnica de XPS indicou a presença de metal em estado de oxidação reduzido. Para o estudo da influência da impregnação de Pt no óxido titânio, foram realizados experimentos de fotocatálise em um reator recoberto com TiO2puro, e em um reator recoberto com TiO2/Pt variando-se a concentração de entrada (de 50 à 500 ppmv) ou o tempo de residência (de 10 à 50 s) para os COV n-octano, iso-octano, n-hexano e ciclohexano. Utilizou-se reatores tubulares com volume interno de 1160 ml com os catalisadores, dióxido de titânio puro ou modificado, imobilizados na parede interna dos reatores. A fonte de radiação UV foi uma lâmpada do tipo germicida de 100W de potência, caracterizada por comprimentos de onda de 254 nm (banda de emissão UV-C). As concentrações na entrada e na saída do reator foram analisadas através de um monitor contínuo de hidrocarbonetos do tipo FID. A adição de platina ao TiO2 gera uma melhoria na eficiência fotocatalítica nas reações de oxidação de COV; a conversão dos COV utilizando o catalisador impregnado com platina atingiu 99 % de conversão, enquanto que TiO2 puro atingiu, no máximo 93% / Abstract: Volatile organic compounds, or VOC, are an important class of air pollutants commonly found in the atmosphere at ground level in urban and industrial centers. The treatment of VOC from industrial sources by oxidative photodegradation is presented as a good alternative. These systems are promising as pollution control technology, since they can decompose low concentrations of VOC efficiently and in ambient conditions. The recombination of electrons and holes formed on the surface of TiO2 is a factor that limits the photocatalytic efficiency. For this reason, many efforts have been made to maximize the separation of charges, in order to improve the photocatalytic efficiency. A proposed alternative is to add noble metals to TiO2 structure. This work aims to study the degradation of volatile organic compounds by heterogeneous photocatalytic oxidation using ultraviolet light, bare TiO2 and TiO2 impregnated with 1% w/w platinum as catalysts. TiO2 catalysts were prepared by impregnating Pt on TiO2 structure by reduction method with NaBH4. The photocatalysts were characterized using analytical techniques like XRD, XPS, UV-Vis Diffuse Reflectance, BET, H2 Chemisorption and SEM/EDS to validate the method of synthesis. All analysis confirmed that the reduction method with NaBH4 do not structurally modify TiO2, keeping its crystallinity and the ratio of anatase/rutile. XPS indicates the presence of metal in reduced oxidation state. To study the influence of the impregnation of platinum on titania, after synthesis and characterization, the study of gas-solid heterogeneous photocatalytic oxidation of some VOC was carried out at room temperature with annular plug flow reactors (1160 ml), one coated with pure TiO2 and another coated with TiO2/Pt, the catalysts were immobilized on reactor¿s internal walls. The photocatalystic tests were performed for n-octane , iso-octane, n-hexane and ciclohexane varying the inlet concentration (from 50 to 500 ppm) or residence time (from 10 to 50 s). The light source was an UV lamp (100 W, wavelengths with a maximum intensity at 254 nm. Reactants and products concentrations were analyzed using a continuous monitoring with a total hydrocarbon analyzer with flame ionization detector (FID). The addition of platinum to TiO2 improves photocatalytic efficiency of oxidation of VOC; conversion of the VOC using impregnated catalyst reached 99%, whereas pure TiO2 was at most 93%. No título do trabalho, a fórmula TiO2 deve vir com o "2" em subscrito, pois trata-se da fómula química da substância / Mestrado / Processos em Tecnologia Química / Mestra em Engenharia Química
18

Studium rozkladu těkavých uhlovodíků v nerovnovážném plazmatu povrchového výboje za atmosférického tlaku / Study of volatile hydrocarbon decomposition in non-thermal plasma of surface discharge at atmoapheric pressure

Věrná, Jana January 2008 (has links)
The main goal of this thesis was to study plasma generated by surface discharge and its application in volatile organic compound destruction. Introduction of this thesis deals with the issue of volatile organic compound. The term of volatile organic compound was defined and explained. Summary of the most important sources of volatile organic compound emissions and possible technics for their elimination was presented. This thesis drew attention on negative aspects of volatile organic compounds on human organism and on the whole environment. The problems of surface discharge and its possible application in various branches are known only few years therefore construction of plasma reactor itself was the first independent step of this work. The plasma reactor was consisted of electrode, which was created from the series of metal stripes each other separated by dielectric barrier. On the surface of the electrode, discharge was regulated and distributed. For the reason of technical limits experiment time was limited up to one minute. The experimental part describes reactor for surface discharge and other parts of apparatus in which degradation volatile organic compound was carried out. Nitrogen was used as carrier gas and it was mixed with air before entering into the reactor. Samples of compounds after degradation process were taken from reactor for the subsequent analysis. Analysis of the products proceeded in a gas chromatogram linked to mass spectrometer. The decomposition products were adsorbed in the SPME filaments or in sorption tubes. The decomposition products were analysed also through the mean of Testo 350 M/XL. This apparatus provided the information on the concentration of small molecules such as CO, H2, NO, NO2 and CxHy Hexane, cyclohexane and xylene were used as VOC examples. Analysis of GC-MS showed decomposition products of hexane, cyclohexane and xylene. The decomposition products were especially various alcohols, ketones, aldehydes and benzene compounds. The apparatus Testo 350 M/XL was unable to detect any CxHy, only large quantity of NO2. This thesis was further focused on possible factors which could have an influence on degradation of compounds, for example input power or different flow of oxygen. It was found that increasing power declined the removal efficiency. The maximum removal efficiency was 87 % for degradation of hexane at the lowest input power. Next part of this thesis was focused on diagnostics of plasma generated in the surface discharge form. The optical emission spectroscopy has been chosen as the best method for plasma characterisation. By this method, various important discharge parameters can be determined, e.g. vibration and rotation temperature. The obtained numeric value of rotation temperature was 840±80 K and vibration temperature was 1880±140 K. The obtained results may be used as a fundament for further study of VOC decomposition in surface discharge.
19

A FUNDAMENTAL AND APPLIED APPROACH TO SELECTED ION FLOW TUBE-MASS SPECTROMETRIC STUDY OF VOLATILE ORGANIC COMPOUNDS IN SWISS-TYPE CHEESES

Castada, Hardy Zingalaoa 29 December 2014 (has links)
No description available.
20

Nanostructured Microcantilever for the Detection of Volatile Compounds

McNeilly, Ryan J. 20 December 2017 (has links)
No description available.

Page generated in 0.1023 seconds