• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 264
  • 44
  • 43
  • 32
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • Tagged with
  • 540
  • 171
  • 136
  • 129
  • 118
  • 63
  • 58
  • 47
  • 46
  • 44
  • 31
  • 30
  • 29
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Clarification of geochemical properties and flow system of geothermal fluids around the Bandung basin for geothermal-resource assessment / 地熱資源評価のためのバンドン盆地周辺における地熱流体の地球化学特性と流動システムの解明

Yudi, Rahayudin 25 May 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22652号 / 工博第4736号 / 新制||工||1740(附属図書館) / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 小池 克明, 教授 米田 稔, 准教授 柏谷 公希 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
192

Understanding Soil Liquefaction of the 2016 Kumamoto Earthquake

Anderson, Donald Jared 01 April 2019 (has links)
The Kumamoto earthquake of April 2016 produced two foreshocks of moment magnitude 6.0 and 6.2 and a mainshock of 7.0, which should have been followed by widespread and intense soil liquefaction. A Geotechnical Extreme Events Reconnaissance team (GEER) led by Professor Rob Kayen of UC Berkley was dispatched to the Kumamoto Plain--which is in Kumamoto Prefecture, the southern main island of Japan--immediately following the earthquake. The Japanese and U.S. engineers in the GEER team observed mostly minor and sporadic liquefaction, which was unexpected as the local site geology, known soil stratigraphy, and intensity of the seismic loading made the Kumamoto Plain ripe for soil liquefaction. The paucity and limited scale of liquefaction shows a clear gap in our understanding of liquefaction in areas with volcanic soils. This study is a direct response to the GEER team's preliminary findings regarding the lack of significant liquefaction. An extensive literature review was conducted on the Kumamoto Plain and its volcanic soil. The liquefaction of the 2016 Kumamoto Earthquake was also researched, and several sites were selected for further analysis. Four sites were analyzed with SPT, CPT, and laboratory testing during the spring of 2017. A slope stability analysis and undisturbed testing were performed for specific sites. The results of the analysis show a general over-prediction of SPT and CPT methods when determining liquefaction hazard. The Youd et al. (2001) NCEES method was the most consistent and accurate in determining liquefaction. The soils in the area including sands and gravels had high levels of fines, plasticity, and organic matter due to the weathering of volcanic ash and pyroclastic material. The volcanically derived coarse-grained soils may also have exhibited some crushability, which gave lower resistance readings. Filled river channels had the worst liquefaction with natural levees and the Kumamoto flood plains having only minor liquefaction. Publicly available boring logs rarely showed laboratory test data of bore holes which led to a general inaccurate soil classification. Boring logs were also not updated with laboratory classifications and data. Undisturbed cyclic triaxial testing of soils at one site showed that volcanic soils had relatively high resistance to soil liquefaction, though drying of samples may have compromised the results. Embankment cracking at one test location was calculated a lateral spread and a seismic slope failure along the pyroclastic flow deposit.
193

Modeling and Assessing Lava Flow Hazards

Gallant, Elisabeth 02 July 2019 (has links)
Lava flow hazards are one of the few constant themes across the wide spectrum of volcanic research in the solar system. These dynamic hazards are controlled by the location of the eruption, the topography and material properties of the land upon which the flow spreads, and the properties of the lava (e.g., volume, temperature, and rheology). Understanding the influences on eruption location and how lava flows modify the landscape are important steps to accurately forecast volcanic hazards. Three studies are presented in this dissertation that address di˙erent aspects of modeling and assessing vent opening and lava flow hazards. The first study uses hierarchical clustering to explore the distribution of activity at Craters of the Moon (COM) lava field on the eastern Snake River Plain (ESRP). Volcanism at COM is characterized by 53 mapped eruptive vents and 60+ lava flows over the last 15 ka. Temporal, spatial, and spatio-temporal clustering methods that examine different aspects of the distribution of volcanic vents are introduced. The sensitivity of temporal clustering to different criteria that capture the age range of magma generation and ascent is examined Spatial clustering is dictated by structures on the ESRP that attempt to capture the footprint of an emplacing dike. A combined spatio-temporal is the best approach to understanding the distribution of linked eruptive centers and can also provide insight into the evolution of volcanism for the region. Spatial density estimation is used to visualize the differences between these models. The goal of this work is to improve vent opening forecasting tools for use in assessing lava flow hazards. The second study presents a new probabilistic lava flow hazard assessment for the U.S. Department of Energy’s Idaho National Laboratory (INL) nuclear facility that (1) explores the way eruptions are defined and modeled, (2) stochastically samples lava flow parameters from observed values for use in MOLASSES, a lava flow simulator, (3) calculates the likelihood of a new vent opening within the boundaries of INL, (4) determines probabilities of lava flow inundation for INL through Monte Carlo simulation, and (5) couples inundation probabilities with recurrence rates to determine the annual likelihood of lava flow inundation for INL. Results show a 30% probability of partial inundation of the INL given an e˙usive eruption on the ESRP, with an annual inundation probability of 8.4×10^−5 to 1.8×10^−4. An annual probability of 6.2×10^−5 to 1.2×10^−4 is estimated for the opening of a new eruptive center within INL boundaries. The third study models thermo-mechanical erosion of a pyroclastic substrate by flow-ing lava on Volcán Momotombo, Nicaragua. It describes the unique morphology of a lava flow channel using TanDEM-X/TerraSAR-X and terrestrial radar digital elevation models. New methods for modeling paleotopography on steep-sided cones are introduced to mea-sure incision depths and document cross-channel profiles. The channel is incised ~35 m into the edifice at the summit and transitions into a constructional feature halfway down the ~1,300 m high cone. An eroded volume of ~4×10^5 m3 was calculated. It is likely that a lava flow eroded into the cone as it emplaced during an eruption in 1905. There is not suÿcient energy to thermally erode this volume, given the observed morphology of the flow. Models are tested that explore the relationship of shearing and material properties of the lava and substrate against measured erosion depths and find that thermo-mechanical erosion is the most likely mode of channel formation. Additionally, it is likely that all forms of erosion via lava flow are impacted by thermal conditions due to the relationship between temperature and substrate hardness. The evolution of these structures (their creation and subsequent infilling) plays an important role in the growth of young volcanoes and also controls future lava flows hazards, as seen by the routing of the 2015 flow into the 1905 channel.
194

Timing and Rates of Events in the Generic Volcanic Earthquake Swarm Model

Rong, Tianyu 25 February 2019 (has links)
In this thesis I combine data from 29 volcanic earthquake swarms that follow the pattern predicted by the Generic Volcanic Earthquake Swarm Model (GVESM; Benoit and McNutt, 1996) to investigate whether the relative timing of various parameters of pre-eruptive volcanic earthquake swarms could be used to forecast the time of an impending eruption. Based on the analysis of seismic unrest preceding many eruptions, the GVESM suggests that it is common to see an increase first in high-frequency earthquakes, then low-frequency earthquakes, then the onset of volcanic tremor. While this pattern is useful to volcano-seismologists, the relative timing and durations of these three different types of volcanic seismicity, is explored here for the first time. The parameters investigated are the onset times of (i) low-frequency (LF) events and of (ii) tremor, and the time at which (iii) the peak rate (PR) of volcano-tectonic (VT) events and (iv) the maximum magnitude (MM) earthquake occur in relation to normalized time defined by swarm onset and end (i.e., eruption). The normalized time starts at the swarm onset (0%) and ends with the eruption (100%) allowing a comparison and joint consideration of parameter occurrences across swarms of different actual duration. We identify the normalized onset time of for each parameter (LF, tremor, PR, MM) with respect to the duration of each swarm. Each swarm has onset time uncertainties of the swarm itself and of its parameters. A swarm with large onset uncertainty could bias the normalized onset time of each parameter and we use weighted means to decrease the influence of swarms with large uncertainties on overall results. The weighted means of LF onset, tremor onset, MM and PR occurrence are 79% ± 23%, 96% ± 10%, 78% ± 29% and 75% ± 34%, respectively. Errors are the standard deviation of each parameter. The uncertainties for LF, MM and PR are large because their normalized onset times have the characteristics of a uniform distribution and therefore seem to have no predictive value. In contrast, tremor onset has a narrow distribution towards the end of swarms. A possible tremor mechanism consistent with this observation could be boiling of groundwater as magma nears the surface. LF onset always seems to precede tremor onset. LF and tremor start early (at less than 80% of normalized time) at five volcanoes with high SiO2 content possibly related to lower density and higher gas content of the resulting magma.
195

Rock Traits from Machine Learning: Application to Rocky Fault Scarps

January 2020 (has links)
abstract: Rock traits (grain size, shape, orientation) are fundamental indicators of geologic processes including geomorphology and active tectonics. Fault zone evolution, fault slip rates, and earthquake timing are informed by examinations of discontinuities in the displacements of the Earth surface at fault scarps. Fault scarps indicate the structure of fault zones fans, relay ramps, and double faults, as well as the surface process response to the deformation and can thus indicate the activity of the fault zone and its potential hazard. “Rocky” fault scarps are unusual because they share characteristics of bedrock and alluvial fault scarps. The Volcanic Tablelands in Bishop, CA offer a natural laboratory with an array of rocky fault scarps. Machine learning mask-Region Convolutional Neural Network segments an orthophoto to identify individual particles along a specific rocky fault scarp. The resulting rock traits for thousands of particles along the scarp are used to develop conceptual models for rocky scarp geomorphology and evolution. In addition to rocky scarp classification, these tools may be useful in many sedimentary and volcanological applications for particle mapping and characterization. / Dissertation/Thesis / Machine learning output data (Appendix II) / Masters Thesis Geological Sciences 2020
196

Mechanical behavior direct shear a volcanic sand reinforced with polypropylene fiber and cement

Maurizio, Cabrera Barrionuevo, Aguilar Jean Pierre, Dominguez, Lidia, Pacheco Miranda 30 September 2020 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / This article describes consolidated Direct Cut tests not drained in the laboratory, carried out on samples of volcanic sand from Arequipa, Peru. The samples were tested for maximum dry density and optimal moisture content; Furthermore, they were reinforced with polypropylene fibers and cement. The samples were reinforced with 0.5% cement with respect to the dry weight of the sample soil and tested at 3 days. The added polypropylene fiber has dimensions of 48 mm wide with 1.2855 mm long and 0.3325 mm thick, and they were used in different percentages regarding the dry weight of the soil sample (0.25% -0.75% -1.00% -1.25%). The results of the tests indicated that the addition of polypropylene fibers together with the cement increases the resistance to cut proportionally to the amount of fiber up to 1% of fiber, this being the best result obtained, decreasing the resistance as the percentage of polypropylene fiber.
197

Challenges and Benefits of Standardising Early Warning Systems: A Case Study of New Zealand’s Volcanic Alert Level System

Potter, Sally H., Scott, Bradley J., Fearnley, Carina J., Leonard, Graham S., Gregg, Christopher E. 01 January 2018 (has links)
Volcano early warning systems are used globally to communicate volcano-related information to diverse stakeholders ranging from specific user groups to the general public, or both. Within the framework of a volcano early warning system, Volcano Alert Level (VAL) systems are commonly used as a simple communication tool to inform society about the status of activity at a specific volcano. Establishing a VAL system that is effective for multiple volcanoes can be challenging, given that each volcano has specific behavioural characteristics. New Zealand has a wide range of volcano types and geological settings, including rhyolitic calderas capable of very large eruptions (>500 km 3 ) and frequent unrest episodes, explosive andesitic stratovolcanoes, and effusive basaltic eruptions at both caldera and volcanic field settings. There is also a range in eruption frequency, requiring the VAL system to be used for both frequently active ‘open-vent’ volcanoes, and reawakening ‘closed-vent’ volcanoes. Furthermore, New Zealand’s volcanoes are situated in a variety of risk settings ranging from the Auckland Volcanic Field, which lies beneath a city of 1.4 million people; to Mt. Ruapehu, the location of popular ski fields that are occasionally impacted by ballistics and lahars, and produces tephra that falls in distant cities. These wide-ranging characteristics and their impact on society provide opportunities to learn from New Zealand’s experience with VAL systems, and the adoption of a standardised single VAL system for all of New Zealand’s volcanoes following a review in 2014. This chapter outlines the results of qualitative research conducted in 2010–2014 with key stakeholders and scientists, including from the volcano observatory at GNS Science, to ensure that the resulting standardised VAL system is an effective communication tool. A number of difficulties were faced in revising the VAL system so that it remains effective for all of the volcanic settings that exist in New Zealand. If warning products are standardised too much, end-user decision making and action can be limited when unusual situations occur, e.g., there may be loss of specific relevance in the alert message. Specific decision-making should be based on more specific parameters than the VAL alone, however wider VAL system standardisation can increase credibility, a known requirement for effective warning, by ensuring that warning sources are clear, trusted and widely understood. With a credible source, user groups are less likely to look for alternatives or confirmation, leading to faster action. Here we consider volcanic warnings within the wider concept of end-to-end multi-hazard early warning systems including detection, evaluation, notification, decision-making and action elements (based on Carsell et al. 2004).
198

A geophysical definition of a Klamath Falls graben fault

Veen, Cynthis Ann 01 January 1979 (has links)
Four geophysical methods, along with well logs and outcrop data, were used in determining the location of a fault situated on the campus of Oregon Institute of Technology, just north of Klamath Falls, Oregon. The fault displaces rocks of the Yonna Formation, of Pliocene age. Wells located northeast of the fault (on the upthrown side) produce cold water, and wells located southwest of the fault (on the downthrown side) produce hot water. The purpose of this investigation was to define the characteristics of the fault exposed behind a large water tank southeast of the OIT campus.
199

Geology of the southcentral margin of the Tillamook Highlands; southwest quarter of the Enright Quadrangle, Tillamook County, Oregon

Cameron, Kenneth Allan 01 January 1980 (has links)
The Tillamook Highlands is a largely unmapped volcanic pile located in the north end of the Coast Range of Oregon. The 36 square miles of T. 1 N., R. 8 W., on the southcentral margin of the Highlands, was chosen for detailed study. The study area is composed of Eocene age sedimentary and volcanic units which were deposited in a filling basin. The lowest units were deposited in moderate to deep marine waters; the uppermost were deposited subaerially.
200

Fragment-Matrix Chemical Analysis of Keewatin Felsic Volcanics From the Kakagi Lake Area, Northwestern Ontario

Debicki, Edward J. 04 1900 (has links)
<p> Five pyroclastic breccia rock samples from a felsic volcanic sequence at Kakagi Lake, Northwestern Ontario, have been analysed for eight major elements using X-Ray Fluorescence to study the fragment-matrix relationships. The salic fragments represent a rhyodacitic composition and the matrices are of andesitic composition showing Fe and Mg enrichment and Si deficiency compared to the fragment. </p> <p> Four matrix and four fragment samples were obtained from one rock,and a triplicate analysis of one of these matrices,compared to the average of the four matrices, showed that the variability of the composition throughout the rock was not due to the analytical procedure. </p> <p> These results agree reasonably well with the trends found in previous work by Goodwin (1968) and Baragar and Goodwin (1969) considering the matrices only. The fragment-matrix study for this area is unique and has been carried out in conjunction with Smith (1971). </p> / Thesis / Bachelor of Science (BSc)

Page generated in 0.5073 seconds