• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 264
  • 44
  • 43
  • 32
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • Tagged with
  • 540
  • 171
  • 136
  • 129
  • 118
  • 63
  • 58
  • 47
  • 46
  • 44
  • 31
  • 30
  • 29
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

A satellite and ash transport model aided approach to assess the radiative impacts of volcanic aerosol in the Arctic

Young, Cindy L. 08 June 2015 (has links)
The Arctic radiation climate is influenced substantially by anthropogenic and natural aerosols. There have been numerous studies devoted to understanding the radiative impacts of anthropogenic aerosols (e.g. those responsible for producing the Arctic haze phenomenon) and natural aerosols (e.g. dust and smoke) on the Arctic environment, but volcanic aerosols have received less attention. Volcanic eruptions occur frequently in the Arctic and have the capacity to be long duration, high intensity events, expelling large amounts of aerosol-sized ash and gases, which form aerosols once in the atmosphere. Additionally, volcanic eruptions deposit ash, which can alter the surface reflectivity, and remain to influence the radiation balance long after the eruptive plume has passed over and dissipated. The goal of this dissertation is to quantify the radiative effects of volcanic aerosols in the Arctic caused by volcanic plumes and deposits onto ice and snow covered surfaces. The shortwave, longwave, and net direct aerosol radiative forcing efficiencies and atmospheric heating/cooling rates caused by volcanic aerosol from the 2009 eruption of Mt. Redoubt were determined by performing radiative transfer modeling constrained by NASA A-Train satellite data. The optical properties of volcanic aerosol were calculated by introducing a compositionally resolved microphysical model developed for both ash and sulfates. Two compositions of volcanic aerosol were considered in order to examine a fresh, ash rich plume and an older, ash poor plume. The results indicate that environmental conditions, such as surface albedo and solar zenith angle, can influence the sign and the magnitude of the radiative forcing at the top of the atmosphere and at the surface. Environmental conditions can also influence the magnitude of the forcing in the aerosol layer. For instance, a fresh, thin plume with a high solar zenith angle over snow cools the surface and warms the top of the atmosphere, but the opposite effect is seen by the same layer over ocean. The layer over snow also warms more than the same plume over seawater. It was found that plume aging can alter the magnitude of the radiative forcing. For example, an aged plume over snow at a high solar zenith angle would warm the top of the atmosphere and layer by less than the fresh plume, while the aged plume cools the surface more. These results were compared with those reported for other aerosols typical to the Arctic environment (smoke from wildfires, Arctic haze, and dust) to demonstrate the importance of volcanic aerosols. It is found that the radiative impacts of volcanic aerosol plumes are comparable to those of other aerosol types, and those compositions rich in volcanic ash can have greater impacts than other aerosol types. Volcanic ash deposited onto ice and snow in the Arctic has the potential to perturb the regional radiation balance by altering the surface reflectivity. The areal extent and loading of ash deposits from the 2009 eruption of Mt. Redoubt were assessed using an Eulerian volcanic ash transport and dispersion model, Fall3D, combined with satellite and deposit observations. Because observations are often limited in remote Arctic regions, we devised a novel method for modeling ash deposit loading fields for the entire eruption based on best-fit parameters of a well-studied eruptive event. The model results were validated against NASA A-train satellite data and field measurements reported by the Alaska Volcano Observatory. Overall, good to moderate agreement was found. A total cumulative deposit area of 3.7 X 10^6 km2 was produced, and loadings ranged from ~7000 ± 3000 gm-2 near the vent to <0.1 ± 0.002 gm-2 on the outskirts of the deposits. Ash loading histories for total deposits showed that fallout ranged from ~5 – 17 hours. The deposit loading results suggest that ash from short duration events can produce regionally significant deposits hundreds of kilometers from the volcano, with the potential of significantly modifying albedo over wide regions of ice and snow covered terrain. The solar broadband albedo change, surface radiative forcing, and snowmelt rates associated with the ash deposited from the 2009 eruption of Mt. Redoubt were calculated using the loadings from Fall3D and the snow, ice, and aerosol radiative models. The optical properties of ash were calculated from Mie theory, based on size information recovered from the Fall3D model. Two sizes of snow were used in order to simulate a young and old snowpack. Deposited ash sizes agree well with field measurements. Only aerosol-sized ashes in deposits were considered for radiative modeling, because larger particles are minor in abundance and confined to areas very close to the vent. The results show concentrations of ash in snow range from ~ 6.9x10^4 – 1x10^8 ppb, with higher values closer to the vent and lowest at the edge of the deposits, and integrated solar albedo reductions of ~ 0 – 59% for new snow and ~ 0 – 85% for old snow. These albedo reductions are much larger than those typical for black carbon, but on the same order of magnitude as those reported for volcanic deposits in Antarctica. The daily mean surface shortwave forcings associated with ash deposits on snow ranged from 0 – 96 Wm-2 from the outmost deposits to the vent. There were no significantly accelerated snowmelts calculated for the outskirts of the deposits. However, for areas of higher ash loadings/concentrations, daily melt rates are significantly higher (~ 220 – 320%) because of volcanic ash deposits.
222

Temporal and Spatial Analysis of Monogenetic Volcanic Fields

Kiyosugi, Koji 01 January 2012 (has links)
Achieving an understanding of the nature of monogenetic volcanic fields depends on identification of the spatial and temporal patterns of volcanism in these fields, and their relationships to structures mapped in the shallow crust and inferred in the deep crust and mantle through interpretation of geochemical, radiometric and geophysical data. We investigate the spatial and temporal distributions of volcanism in the Abu Monogenetic Volcano Group, Southwest Japan. E-W elongated volcano distribution, which is identified by a nonparametric kernel method, is found to be consistent with the spatial extent of P-wave velocity anomalies in the lower crust and upper mantle, supporting the idea that the spatial density map of volcanic vents reflects the geometry of a mantle diapir. Estimated basalt supply to the lower crust is constant. This observation and the spatial distribution of volcanic vents suggest stability of magma productivity and essentially constant two-dimensional size of the source mantle diapir. We mapped conduits, dike segments, and sills in the San Rafael sub-volcanic field, Utah, where the shallowest part of a Pliocene magmatic system is exceptionally well exposed. The distribution of conduits matches the major features of dike distribution, including development of clusters and distribution of outliers. The comparison of San Rafael conduit distribution and the distributions of volcanoes in several recently active volcanic fields supports the use of statistical models, such as nonparametric kernel methods, in probabilistic hazard assessment for distributed volcanism. We developed a new recurrence rate calculation method that uses a Monte Carlo procedure to better reflect and understand the impact of uncertainties of radiometric age determinations on uncertainty of recurrence rate estimates for volcanic activity in the Abu, Yucca Mountain Region, and Izu-Tobu volcanic fields. Results suggest that the recurrence rates of volcanic fields can change by more than one order of magnitude on time scales of several hundred thousand to several million years. This suggests that magma generation rate beneath volcanic fields may change over these time scales. Also, recurrence rate varies more than one order of magnitude between these volcanic fields, consistent with the idea that distributed volcanism may be influenced by both the rate of magma generation and the potential for dike interaction during ascent.
223

Differentiation regimes in the Central Andean magma systems: case studies of Taapaca and Parinacota volcanoes, Northern Chile

Banaszak, Magdalena 23 April 2014 (has links)
No description available.
224

Measurements of the complex refractive index of volcanic ash

Reed, Benjamin Edward January 2016 (has links)
This thesis describes laboratory measurements of the complex refractive index of volcanic ash particles. These measurements are needed to model the radiative impact of volcanic ash, vital for accurate satellite remote sensing. Three experimental methods have been developed, and the results for the complex refractive index and optical properties of a wide range of volcanic ash samples are presented. Measurements were made of the spectral transmission of radiation through suspended volcanic ash particles inside an aerosol cell, using a Fourier transform spectrometer at infrared wavelengths and two diffraction grating spectrometers covering ultraviolet, visible, and near-infrared wavelengths. In addition to the optical measurements, a suite of sampling and sizing instruments were connected downstream of the aerosol cell to measure the particle size distribution. The method was calibrated using two quartz samples. Mass extinction coefficients for nine volcanic ash samples, at 0.3-14 μm, are presented and show considerable variation. These variations are linked to the composition of the samples, measured using X-ray fluorescence (XRF) analysis. The complex refractive index, at 0.3-14 μm, of the two quartz samples and two samples of volcanic ash from the 2010 Eyjafjallajökull eruption were retrieved from the extinction measurements. The forward model used Mie theory and a classical damped harmonic oscillator (CDHO) model to represent the complex refractive index of the samples in terms of a finite set of band parameters, as well as the real refractive index of the sample in the small wavelength limit. Previous studies have shown that there is a redundancy in the retrievals between the band strength parameters and the real refractive index in the small wavelength limit, which can lead to spurious values for the retrieved complex refractive index. This problem was overcome by using an independent measurement of the real refractive index at a visible wavelength, to constrain the model parameter of the real refractive index in the short wavelength limit. Independent measurements of the complex refractive index at visible wavelengths are also important because the extinction produced at these wavelengths is highly sensitive to the particle size distribution, and any uncertainty in the measured size distribution will contribute to significant systematic error in the refractive index retrieved from extinction. The retrieved spectral complex refractive index of Eyjafjallajökull ash was applied using the ORAC retrieval scheme to measurements of the 2010 Eyjafjallajökull eruptionmade by theMODIS instrument aboard NASA's Terra satellite. Significant difference were found in the retrieved plume parameters of optical path, effective radius, and plume altitude, compared to assuming a literature measurement for the refractive index of pumice. For three discrete visible wavelengths (450, 546.7, and 650 nm) an optical microscope was used to make measurements of the complex refractive index of the volcanic ash samples. The long-established Becke line method was used to measure the real refractive index of the samples. For the imaginary refractive index, a new and novelmethod was developed involving measurements of the attenuation of light in individual particles. A strong linear correlation was found between the SiO<sub>2</sub> content of the samples and both their real and imaginary refractive indices at the visible wavelengths investigated. Furthermore, from the XRF compositional analysis of the samples values were calculated for the ratio of non-bridging oxygen atoms per tetrahedral cation (NBO/T), and it was found that NBO/T was an even stronger predictor of real refractive index at visible wavelengths. The optical microscope measurements could only be applied to particles with a radius larger than 10 μm. A new refractometer method was investigated for retrieving the real refractive index of submicron particles from colloidal reflectance measurements close to the critical angle in an internal reflection configuration. A coherent scattering model (CSM) was used to model the coherent reflection from a half-space of monodisperse or polydisperse particles, and a simple extension of the model is presented to properly account for the modified size distribution at the interface in an internal reflection set-up. A rigorous sensitivity analysis was performed to determine how experimental uncertainties propagate into uncertainty associated with the retrieved real refractive index, and the uncertainty due to non-spherical effects was estimated using T-matrix methods. Experimental reflectance data at a wavelength of 635 nm were obtained for spherical monodisperse polystyrene calibration particles, a polydisperse sand sample, and a polydisperse volcanic ash sample. The retrieved values for the real refractive index agreed, within propagated uncertainties, with values measured using other techniques. The method is shown to be a viable technique for measuring the real refractive index of small quantities of submicron particles, and can also retrieve the concentration and size of particles.
225

Neotectonics of Java, Indonesia: Crustal Deformation in the Overriding Plate of an Orthogonal Subduction System

January 2016 (has links)
abstract: Shallow earthquakes in the upper part of the overriding plate of subduction zones can be devastating due to their proximity to population centers despite the smaller rupture extents than commonly occur on subduction megathrusts that produce the largest earthquakes. Damaging effects can be greater in volcanic arcs like Java because ground shaking is amplified by surficial deposits of uncompacted volcaniclastic sediments. Identifying the upper-plate structures and their potential hazards is key for minimizing the dangers they pose. In particular, the knowledge of the regional stress field and deformation pattern in this region will help us to better understand how subduction and collision affects deformation in this part of the overriding plate. The majority of the upper plate deformation studies have been focused on the deformation in the main thrusts of the fore-arc region. Study of deformation within volcanic arc is limited despite the associated earthquake hazards. In this study, I use maps of active upper-plate structures, earthquake moment tensor data and stress orientation deduced from volcano morphology analysis to characterize the strain field of Java arc. In addition, I use sandbox analog modeling to evaluate the mechanical factors that may be important in controlling deformation. My field- and remotely-based mapping of active faults and folds, supplemented by results from my paleoseismic studies and physical models of the system, suggest that Java’s deformation is distributed over broad areas along small-scale structures. Java is segmented into three main zones based on their distinctive structural patterns and stress orientation. East Java is characterized by NW-SE normal and strike-slip faults, Central Java has E-W folds and thrust faults, and NE-SW strike-slip faults dominate West Java. The sandbox analog models indicate that the strain in response to collision is partitioned into thrusting and strike-slip faulting, with the dominance of margin-normal thrust faulting. My models test the effects of convergence obliquity, geometry, preexisting weaknesses, asperities, and lateral strength contrast. The result suggest that slight variations in convergence obliquity do not affect the deformation pattern significantly, while the margin shape, lateral strength contrast, and perturbation of deformation from asperities each have a greater impact on deformation. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2016
226

Arc Crust-Magma Interaction in the Andean Southern Volcanic Zone from Thermobarometry, Mineral Composition, Radiogenic Isotope and Rare Earth Element Systematics of the Azufre-Planchon-Peteroa Volcanic Complex, Chile

Holbik, Sven P 23 May 2014 (has links)
The Andean Southern Volcanic Zone (SVZ) is a vast and complex continental arc that has been studied extensively to provide an understanding of arc-magma genesis, the origin and chemical evolution of the continental crust, and geochemical compositions of volcanic products. The present study focuses on distinguishing the magma/sub-arc crustal interaction of eruptive products from the Azufre-Planchon-Peteroa (APP 35°15’S) volcanic center and other major centers in the Central SVZ (CSVZ 37°S - 42°S), Transitional SVZ (TSVZ 34.3-37.0°S), and Northern SVZ (NSVZ 33°S - 34°30’S). New Hf and Nd isotopic and trace element data for SVZ centers are consistent with former studies that these magmas experienced variable depths of crystal fractionation, and that crustal assimilation is restricted to the lower crustal depths with an apparent role of garnet. Thermobarometric calculations applied to magma compositions constrain the depth of magma separation from mantle sources in all segments of the SVZ to(70-90 km). Magmatic separation at the APP complex occurs at an average depth of ~50 km which is confined to the mantle lithosphere and the base of the crust suggesting localized thermal abrasion both reservoirs. Thermobarometric calculations indicate that CSVZ primary magmas arise from a similar average depth of (~54 km) which confines magma separation to the asthenospheric mantle. The northwards along-arc Sr-Nd-Hf isotopic data and LREE enrichment accompanied with HREE depletion of SVZ mafic magmas correlates well with northward increasing crustal thickness and decreasing primary melt separation from mantle source regions indicating an increased involvement of lower crustal components in SVZ magma petrogenesis. The study concludes that the development of mature subduction zones over millions of years of continuous magmatism requires that mafic arc derived melts stagnate at lower crustal levels due to density similarities and emplace at lower crustal depths. Basaltic underplating creates localized hot zone environments below major magmatic centers. These regions of high temperature/partial melting, and equilibration with underplated mafic rocks provides the mechanism that controls trace element and isotopic variability of primary magmas of the TSVZ and NSVZ from their baseline CSVZ-like precursors.
227

Structure des croûtes profondes à déformation syn-magmatique en contexte extensif / Structure of deep crusts affected by syn-magmatic deformation in extensional contexts

Bidault, Marie 04 March 2019 (has links)
Les profils de sismique réflexion de Marges Passives Volcaniques imagent une croûte inférieure réflective formée de deux domaines distincts. Ces réflecteurs sont interprétés comme des intrusions mafiques associées à la formation de la marge. Les observations géophysiques ne permettent pas de comprendre les conséquences associées à la mise en place de ces magmas sur la rhéologie et la déformation effective de la croûte inférieure des marges volcaniques. Cette thèse explore deux exemples géologiques de croûte inférieure à l’affleurement qui ont été affectés par d’importants volumes magmatiques pendant leur histoire extensive : la Zone d’Ivrée (Alpes italiennes) et la province de Seiland (Calédonides finmarkiennes). Une étude approfondie de terrain, associée à des analyses géochimiques et isotopiques ainsi qu’à des expériences de déformation en Presse Paterson permet, (1) de définir la structure synthétique finie d’une croûte inférieure extensive affectée par un ou plusieurs épisodes magmatiques intenses et d'identifier dans la Zone d’Ivrée une croûte moyenne ductile, dans laquelle s’enracinent les failles de la croûte supérieure, (2) de montrer l’évolution de la rhéologie et de la déformation ductile de la croûte inférieure relativement à la mise en place des magmas (3) de caractériser à partir de Seiland l’interface croûte manteau dans un contexte d’extension synmagmatisme mafique. L’ensemble des résultats montre la complexité des relations, à la fois structurales, spatiales et temporelles, entre les magmas et roches mafiques et la déformation en extension dans la croûte inférieure. / Seismic reflection profiles of Volcanic Passive Margins show a two-domain reflective lower crust. The particular reflectors are interpreted as mafic intrusions associated to the margin evolution.From those geophysical observations it is not possible to understand the consequences of mafic magma emplacement on the rheology and effective deformation of volcanic margins lower crust. This thesis explores two geologic examples of outcropping lower crusts affected by important volumes of magma during their extensional story: the Ivrea Zone (Italian Alps) and Seiland (Finmarkian Caledonides). An important field study associated to geochemical and isotopic analyses, and to Patersonapparatus deformation experiences led to (1) define a synthetic structure of an extensional lower crust affected by one or more major magmatic events and to indentify a ductile middle crust in the Ivrea Zone where roots the upper crust faults, (2) show the rheologic and deformation evolution of the lower crust in relation to magma emplacement timing, (3) characterize, from Seiland observations, the crustmantle interface in an extensional System. The whole study shows the complexity of the temporal, spatial and structural relationships between mafic rocks (as magma and as crystallised rock) and extensional deformation in the lower crust.
228

The Boiling Springs Lake Metavirome: Charting the Viral Sequence-Space of an Extreme Environment Microbial Ecosystem

Diemer, Geoffrey Scott 04 March 2014 (has links)
Viruses are the most abundant organisms on Earth, yet their collective evolutionary history, biodiversity and functional capacity is not well understood. Viral metagenomics offers a potential means of establishing a more comprehensive view of virus diversity and evolution, as vast amounts of new sequence data becomes available for comparative analysis.Metagenomic DNA from virus-sized particles (smaller than 0.2 microns in diameter) was isolated from approximately 20 liters of sediment obtained from Boiling Springs Lake (BSL) and sequenced. BSL is a large, acidic hot-spring (with a pH of 2.2, and temperatures ranging from 50°C to 96°C) located in Lassen Volcanic National Park, USA. BSL supports a purely microbial ecosystem comprised largely of Archaea and Bacteria, however, the lower temperature regions permit the growth of acid- and thermo-tolerant Eukarya. This distinctive feature of the BSL microbial ecosystem ensures that virus types infecting all domains of life will be present. The metagenomic sequence data was used to characterize the types of viruses present within the microbial ecosystem, to ascertain the extent of genetic diversity and novelty comprising the BSL virus assemblage, and to explore the genomic and structural modalities of virus evolution.Metagenomic surveys of natural virus assemblages, including the survey of BSL, have revealed that the diversity within the virosphere far exceeds what has currently been determined through the detailed study of viruses that are relevant to human health and agriculture. The number of as-yet-uncharacterized virus protein families present in the BSL assemblage was estimated by clustering analysis. Genomic context analysis of the predicted viral protein sequences in the BSL dataset indicates that most of the putative uncharacterized proteins are endemic or unique to BSL, and are largely harbored by known virus types. A comparative metagenomic analysis approach identified a set of conserved, yet uncharacterized BSL protein sequences that are commonly found in other similar and dissimilar environments.New sequence data from metagenomic surveys of natural virus assemblages was also used to better characterize and define known virus protein families, as some of the viruses found in the BSL environment represent distant relatives of well-characterized isolates. By comparing viral genes and protein sequences from these highly divergent species, it is possible to better understand the dynamics of adaptation and evolution in the virosphere. Additionally, as structures of virus proteins continue to be experimentally determined by X-ray crystallography and cryo-electron microscopy, a merger of structural and metagenomic sequence data allows the opportunity to observe the structural dynamics underlying virus protein evolution.Capsid (structural) proteins from two distinct Microviridae strains; a globally ubiquitous and highly sequence-diverse virus family, were identified in, and isolated from the BSL metagenomic DNA sample. These BSL capsid protein sequences, along with several other homologous sequences derived from metagenomic surveys and laboratory isolates, were mapped to the solved structure of a closely related capsid protein from the Spiroplasma phage-4 microvirus. Patterns of amino acid sequence conservation, unveiled by structure-based homology modeling analysis, revealed that the protein sequences within this family exhibit a remarkable level of plasticity, while remaining structurally and functionally congruent.Lateral gene transfer is thought to have had a significant impact on the genomic evolution and adaptation of virus families. Genomic context analysis was also utilized to identify interviral gene transfer within the BSL virus assemblage. An ostensibly rare interviral gene transfer event, having transpired between single-stranded RNA and DNA virus types, was detected in the BSL metagenome. Similar genomes were subsequently detected in other ecosystems around the globe. The discovery of this new virus genome dramatically underscores the scope and importance of genetic mobility and genomic mosaicism as major forces driving the evolution of viruses.The analyses conducted herein demonstrate the many ways in which viral metagenomic sequence data may be utilized to not only evaluate the composition of a natural virus assemblage, but to discover new viral genes, and to better understand the dynamics of both genomic and structural evolution within the virosphere.
229

Scoria cones as climate and erosion markers: morphometric analysis of Erebus Volcanic Province, Antarctica, using high-resolution digital elevation data

Collins, Andrew L. 19 August 2015 (has links)
No description available.
230

TEPHROSTRATIGRAPHIC AND GEOCHEMICAL INVESTIGATION OF COMPOSITIONALLY HETEROGENEOUS SILICIC TEPHRA IN THE MIDDLE AWASH REGION, AFAR, ETHIOPIA

Walkup, Laura Casey 16 August 2013 (has links)
No description available.

Page generated in 0.0861 seconds