• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of Active Clamp for Fast Transient Voltage Regulator-Down (VRD) Applications

Ma, Yan 04 January 2005 (has links)
Since the early 80s, the computer industry has undergone great expansion. Processors are becoming faster and more powerful. Power management issues in computing systems are becoming more and more complex and challenging. An evolution began when the high-performance Pentium processor was driven by a non-standard, less-than-5V power supply, instead of drawing its power from the 5V plane on the system board. A so-called Voltage Regulator Module (VRM) is put close to the processor in order to provide the power as quickly as possible. Nowadays, for desktop and workstation applications, VRM input voltage has moved to the 12V output of the silver box. In the meantime, microprocessors will run at very low voltage (below 1V), will consume up to 100A of current, and will have dynamics of about 400A/us. In the near future, VRM will be replaced with VRD because of the parasitic components effect. The specifications requirements for VRD are even more challenging than VRM. With this kind of tight tolerance, high current and fast current slew rate, transient response requirements for VRD design are very challenging, especially for step-down transient. During step-down transient, there is some additional energy stored in inductor. Traditional switching regulator like multi-phase buck can do nothing for this even by saturating the duty cycle to 0. All of the additional energy in inductor will be dumped into output cap and cause a large voltage spike at the output voltage. Even for step-up transient, traditional linear control like voltage loop control can't provide enough bandwidth because of the slow compensation and slow slew rate of the error amplifier. So the voltage drop is still quite large. Comparing with traditional linear controlled switching regulator such as voltage control and current control buck converter, active clamp has a lot of the advantages for the transient response. With proper design, active clamp can generate a very high bandwidth since there is no compensator needed in the control loop. Since active clamp bypasses inductor and is connected directly to the output cap, it can quickly source and sink current from the output cap even during the step-down transient and prevent overshooting of the output voltage. This is the biggest advantage for active clamp comparing with traditional linear control. In this thesis, a new active clamp structure is proposed. Several new concepts are proposed like non-linear Gm, built-in offset Gm, error signal feedback and AVP design. A one-channel buck converter with new active clamp and voltage loop control is implemented and verified using real transistors based on 0.5um CMOS process. / Master of Science

Page generated in 0.0645 seconds