Spelling suggestions: "subject:"momentenbedingung"" "subject:"volumenstrombedingungen""
1 |
A Class of Elliptic Obstacle-Type Quasi-Variational Inequalities: Theory and Solution MethodsBrüggemann, Jo Andrea 24 November 2023 (has links)
Quasi-Variationsungleichungen (QVIs) treten in einer Vielzahl mathematischer Modelle auf, welche komplexe Equilibrium-artige Phänomene aus den Natur- oder Sozialwissenschaften beschreiben. Obgleich ihrer vielfältigen Anwendungsmöglichkeiten in Bereichen wie der Biologie, Kontinuumsmechanik, Physik, Geologie und Ökonomie sind Ergebnisse zur allgemeinen theoretischen und algorithmischen Lösung von QVIs in der Literatur eher rar gesät – insbesondere im unendlich-dimensionalen Kontext.
Zentraler Gegenstand dieser Dissertation sind elliptische QVIs vom Hindernis-Typ mit einer zusätzlichen Volumen-Nebenbedingung, die durch ein vereinfachtes Modell eines nachgiebigen Hindernisses aus der Biomedizin motiviert werden. Aussagen zur Existenz von Lösungen werden durch die Charakterisierung der QVI als eine Fixpunkt Gleichung ermöglicht. Zur Lösung der betrachteten QVI selbst wird im Allgemeinen auf eine sequentielle Minimierungsmethode zurückgegriffen und eine Folge von Minimierungs- oder Variationsproblemen vom Hindernis-Typ betrachtet. In diesem Sinne ist für die numerische Behandlung der QVI die effiziente Lösung der auftretenden sequentiellen Probleme maßgeblich. Bei der Entwicklung geeigneter Lösungsmethoden wird insbesondere den Aspekten gitterunabhängige Verfahren sowie adaptive Diskretisierung des kontinuierlichen Problems mittels Finiter Elemente Rechnung getragen: Nach Anwendung der sequentiellen Minimierungsmethode auf die QVI werden die Hindernisprobleme durch eine Folge von Moreau–Yosida-regularisierten Problemen approximiert und anschliessend mit der nichtglatten (semismooth) Newton Methode und einer Pfadverfolgungsstrategie hinsichtlich des Yosida-Parameters gelöst. Die numerische Lösung erfolgt mittels einer adaptiver Finite Elemente Methode (AFEM), wobei die lokale Gitterverfeinerung auf a posteriori Residuen-basierten Schätzern des Approximierungsfehlers beruht. Numerische Experimente schließen die Arbeit ab. / Quasi-variational inequalities (QVIs) are used to describe complex equilibrium-type phenomena in many models in the natural and social sciences. Despite the abundance of different applications of QVIs—e.g., in biology, continuum mechanics, physics, geology, economics—there is only scarce literature on general theoretical and algorithmic approaches to solve problems involving QVIs particularly in infinite dimensions. This thesis focuses on elliptic obstacle-type QVIs with an additional volume constraint that are motivated by the simplified model of a compliant obstacle-type situation stemming from biomedicine. The first part of the thesis establishes existence of solutions to this type of QVIs under different sets of assumptions upon converting the problem to a fixed point equation. Unless the compliant obstacle map exhibits differentiability properties—in which case the problem can be regularised and solved directly in function space—the QVI can only be solved using a sequential variational or minimisation technique that leads to a sequence of obstacle-type problems. The ensuing parts of the thesis cover the efficient (numerical) solution of the emerging sequential problems where a major focus is on the aspects of mesh-independent performance of the solution method and the adaptive discretisation of the continuous problem based on finite elements. The obstacle-type problems resulting from using the sequential minimisation technique on the QVI are solved resorting to Moreau–Yosida-based approximation along with a semismooth Newton solver and a path-following regime for the sake of mesh-independence, which is subject of the second part. The corresponding discretised problems are solved with an adaptive finite element method (AFEM) that uses a posteriori residual-based error estimation techniques for Moreau–Yosida-based approximations of obstacle-type problems, the latter which are explored in the third part. The thesis concludes with numerical experiments.
|
Page generated in 0.0542 seconds