1 |
An Experimental Investigation of Spanwise Vortices Interacting with Solid and Free SurfacesDonnelly, Martin John 06 September 2006 (has links)
Coherent vortices are generated in flow fields due to flow interaction with sharp solid surfaces. Such vortices generate significant disturbances in the flow and affect its further development. In this dissertation attention is focused on the interaction of vortices with solid or free liquid/air surfaces. We examine vortices with their axis parallel or normal to the surface. Three main cases were examined: the interaction of a vortex pair propagating towards a solid boundary, the interaction of spanwise vortices in a turbulent boundary layer, and finally the interaction of spanwise vortices with a flat-plate wake and a free liquid surface. These problems hold significance in several engineering applications, including investigations into trailing wing tip vortices and their interaction with the ground, vortical effects on the development of turbulent boundary layers and free surface signatures and their detection in ship/submarine wakes. Data are acquired with a laser Doppler velocimetry system (LDV) and with Particle-Image Velocimetry (PIV), using a high-speed digital video camera. The LDV system measures two components of velocity along appropriately chosen planes. Grids of data were acquired for different pitch rates of a disturbing flap that generates vortices. Phase-averaged vorticity and turbulence level contours are estimated and presented. It is found that vortices with diameter the order of the boundary layer quickly diffuse and disappear while their turbulent kinetic energy spreads uniformly across the entire boundary layer. Larger vortices have a considerably longer life span and in turn feed more vorticity into the boundary layer. Trailing edge vortices are generated in a water tunnel by sharp hinged motions of a flap. These vortices are allowed to reconnect with the free surface and mix with a turbulent free shear layer. The flow is conditionally sampled via frame grabbing of free surface shadowgraphs. It is found that the vortex core bends away from the plane of the shear layer. Moreover, contrary to earlier findings, organized velocity fluctuations decrease as the free surface is approached. / Ph. D.
|
2 |
Modification of Blade-Vortex Interactions Using Leading Edge BlowingWeiland, Christopher 16 May 2007 (has links)
The interaction of an unsteady wake with a solid body can induce sizable loading of the structure, which has many detrimental side effects in both the structural and acoustic senses. These interactions are ubiquitous in nature and engineering. A flow control technique is sought to mitigate this interaction, thereby decreasing the level of structural vibration.
This thesis investigates the effectiveness of steady leading-edge blowing (LEB) flow control for modifying the vortex induced vibrations on an airfoil in the wake of a circular cylinder. The airfoil was allowed to oscillate perpendicular to the fluid flow direction in response to the impinging Von-Karman vortex street. The flow field and airfoil vibrations were simultaneously captured using Digital Particle Image Velocimetry (DPIV) and accelerometer measurements in a time-resolved sense. The results indicate that LEB can significantly reduce the degree of unsteady loading due to the blade vortex interaction (BVI). In some cases, the LEB jet appears to break the coherency of a vortex incident on the airfoil, and in other cases the jet increase the mean stand-off distance of the vortex as it convects over the airfoil surface. It was also found that, for large circular cylinders, if the airfoil is within the mean closure point of the circular cylinder wake, the LEB can increase the level of BVI.
The Proper Orthogonal Decomposition (POD) was also used to analyze the DPIV data. POD is mathematically superior for reducing a data rich field into fundamental modes; a suitable basis function for the reduction is chosen mathematically and it is not left to the researcher to pick the basis function. A comparison of the energy in these modes is useful in ascertaining the dynamics of the BVI. For one of the two cases examined with POD, it was found for no LEB the fundamental (i.e. most energetic) mode is given by the vortex shedding of the circular cylinder upstream. The addition of LEB reduces the energy contained in this fundamental mode. Thus the LEB jet has the effect of reducing the flow field coherency; the structure of the large vortices is broken up into smaller vortices. For the other case, the LEB jet has the opposite effect: the jet has the ability to organize the circular cylinder wake into coherent structures. This acts to increase the coherency of the circular cylinder wake and increases the level of BVI. / Master of Science
|
3 |
Flow structure and vorticity transport on a plunging wingEslam Panah, Azar 01 May 2014 (has links)
The structure and dynamics of the flow field created by a plunging flat plate airfoil are investigated at a chord Reynolds number of 10,000 while varying plunge amplitude and Strouhal number. Digital particle image velocimetry measurements are used to characterize the shedding patterns and the interactions between the leading and trailing edge vortex structures (LEV and TEV), resulting in the development of a wake classification system based on the nature and timing of interactions between the leading- and trailing-edge vortices. The convection speed of the LEV and its resulting interaction with the TEV is primarily dependent on reduced frequency; however, at Strouhal numbers above approximately 0.4, a significant influence of Strouhal number (or plunge amplitude) is observed in which LEV convection is retarded, and the contribution of the LEV to the wake is diminished. It is shown that this effect is caused by an enhanced interaction between the LEV and the airfoil surface, due to a significant increase in the strength of the vortices in this Strouhal number range, for all plunge amplitudes investigated. Comparison with low-Reynolds-number studies of plunging airfoil aerodynamics reveals a high degree of consistency and suggests applicability of the classification system beyond the range examined in the present work. Some important differences are also observed.
The three-dimensional flow field was characterized for a plunging two-dimensional flat-plate airfoil using three-dimensional reconstructions of planar PIV data. Whereas the phase-averaged description of the flow field shows the secondary vortex penetrating the leading-edge shear layer to terminate LEV formation on the airfoil, time-resolved, instantaneous PIV measurements show a continuous and growing entrainment of secondary vorticity into the shear layer and LEV. A planar control volume analysis on the airfoil indicated that the generation of secondary vorticity produced approximately one half the circulation, in magnitude, as the leading-edge shear layer flux. A small but non-negligible vorticity source was also attributed to spanwise flow toward the end of the downstroke.
Preliminary measurements of the structure and dynamics of the leading-edge vortex (LEV) are also investigated for plunging finite-aspect-ratio wings at a chord Reynolds number of 10,000 while varying aspect ratio and root boundary condition. Stereoscopic particle image velocimetry (SPIV) measurements are used to characterize LEV dynamics and interactions with the plate in multiple chordwise planes. The relationship between the vorticity field and the spanwise flow field over the wing, and the influence of root boundary conditions on these quantities has been investigated. The viscous symmetry plane is found to influence this flow field, in comparison to other studies \cite{YiRo:2010,Vi:2011b,CaWaGuVi:2012}, by influencing tilting of the LEV near the symmetry wall, and introducing a corewise root-to-tip flow near the symmetry plane. Modifications in the root boundary conditions are found to significantly affect this. LEV circulations for the different aspect ratio plates are also compared. At the bottom of the downstroke, the maximum circulation is found at the middle of the semi-span in each case. The circulation of the $sAR=2$ wing is found to significantly exceed that of the $sAR=1$ wing and, surprisingly, the maximum circulation value is found to be independent of root boundary conditions for the $sAR=2$ case and also closely matched that of the quasi-2D case.
Furthermore, the 3-D flow field of a finite wing of $sAR=2$ was characterized using three-dimensional reconstructions of planar PIV data after minimizing the gap between the plunging plate and the top stationary wall. The LEV on the finite wing rapidly evolved into an arch structure centered at approximately the 50\% spanwise position, similar to previous observations by Calderon et al. \cite{CaWaGu:2010}, and Yilmaz and Rockwell \cite{YiRo:2010}. At that location, the circulation contribution due to spanwise flow was approximately half that of the shear layer flux because of the significantly greater three-dimensionality in the flow. Increased tilting at the 25\% and 75\% spanwise locations suggests increasing three-dimensionality at those locations compared to the symmetry plane of the arch (50\% spanwise location). The deviation between the LEV circulation and integrated convective vorticity fluxes at the 50\% spanwise location suggests that entrainment of secondary vorticity plays a similar role in regulating LEV circulation as in the 2D case. While the wing surface flux of vorticity could not be measured in that case, the significant difference between LEV circulation and the known integrated fluxes is comparable to that for the 2D plate, suggesting that a significant boundary flux of secondary vorticity may exist.
|
4 |
Numerical study of flame dynamicsPetchenko, Arkady January 2007 (has links)
Modern industrial society is based on combustion with ever increasing standards on the efficiency of burning. One of the main combustion characteristics is the burning rate, which is influenced by intrinsic flame instabilities, external turbulence and flame interaction with walls of combustor and sound waves. In the present work we started with the problem how to include combustion along the vortex axis into the general theory of turbulent burning. We demonstrated that the most representative geometry for such problem is a hypothetic “tube” with rotating gaseous mixture. We obtained that burning in a vortex is similar to the bubble motion in an effective acceleration field created by the centrifugal force. If the intensity of the vortex is rather high then the flame speed is determined mostly by the velocity of the bubble. The results obtained complement the renormalization theory of turbulent burning. Using the results on flame propagation along a vortex we calculated the turbulent flame velocity, compared it to the experiments and found rather good agreement. All experiments on turbulent combustion in tubes inevitably involve flame interaction with walls. In the present thesis flame propagation in the geometry of a tube with nonslip walls has been widely studied numerically and analytically. We obtained that in the case of an open tube flame interaction with nonslip walls leads to the oscillating regime of burning. The oscillations are accompanied by variations of the curved flame shape and the velocity of flame propagation. If flame propagates from the closed tube end, then the flame front accelerates with no limit until the detonation is triggered. The above results make a good advance in solving one of the most difficult problems of combustion theory, the problem of deflagration to detonation transition. We developed the analytical theory of accelerating flames and found good agreement with results of direct numerical simulations. Also we performed analytical and numerical studies of another mechanism of flame acceleration caused by initial conditions. The flame ignited at the axis of a tube acquires a “finger” shape and accelerates. Still, such acceleration takes place for a rather short time until the flame reaches the tube wall. In the case of flame propagating from the open tube end to the closed one the flame front oscillates and therefore generates acoustic waves. The acoustic waves reflected from the closed end distort the flame surface. When the frequency of acoustic mode between the flame front and the tube end comes in resonance with intrinsic flame oscillations the burning rate increases considerably and the flame front becomes violently corrugated.
|
5 |
The Development and Control of Axial Vortices over Swept WingsKlute, Sandra M. 11 November 1999 (has links)
The natural unsteadiness in the post-breakdown flowfield of a 75° sweep delta wing at 40° angle of attack was studied with dual and single point hot-wire anemometry in the Engineering Science and Mechanics (ESM) Wind Tunnel at a Reynolds number Re = 210,000. Data were taken in five crossflow planes surrounding the wing's trailing edge. Results showed a dominant narrowband Strouhal frequency of St = 1.5 covering approximately 80% of the area with lower-intensity broadband secondary frequencies over 15% of that region. Cross-correlations between a fixed and traversing wire were calculated and phase and coherences mapped to determine the convection speed and trajectory of the helical mode instability. High-speed Particle Image Velocimetry (PIV) was conducted over a 75° sweep delta wing at 40° angle of attack in the ESM Water Tunnel II at Re = 45,000. Data were taken along the axis of the vortex in the breakdown flowfield at a speed of 0.1% of the convective time scale of the flow. Animations of instantaneous streamlines and velocity vectors revealed the impression of a helically spiralling vortex core on the measurement plane. Spectral analysis of the PIV data showed reduced frequencies which confirmed those found with the single-point measurements made in the ESM Wind Tunnel. The effect of four novel control surfaces on the breakdown flowfield of the delta wing was studied with surface pressure measurements along the axis of the vortex in the ESM Wind Tunnel. The apex flap was found effective and delayed vortex breakdown by 8° for a fixed wing. The flowfield was characterized over the delta wing executing a pitch-up maneuver at a reduced frequency of 0.06. Surface pressure measurements were taken in the ESM Wind Tunnel and Laser Doppler Velocimetry (LDV) was employed in the ESM Water Tunnel I as both the unmodified wing and then the wing with an apex flap deployed at an optimal angle <font face="Symbol">b</font> = 15° executed the pitch-up. Both sets of data confirmed the hysteresis of the flowfield. The LDV data, taken in two crossflow planes throughout the maneuver, showed an asymmetric breakdown development. As a practical extension of the study of the breakdown wake flowfield, hot-wire measurements were made over an F/A-18 model to determine the spectral characteristics of the flowfield. Three-dimensional vortex interactions were investigated with helium bubble flow visualization in the VPI Stability Tunnel. / Ph. D.
|
6 |
Unsteady Physics and Aeroelastic Response of Streamwise Vortex-Surface InteractionsBarnes, Caleb J. 18 May 2015 (has links)
No description available.
|
7 |
Turbulence and Sound Generated by a Rotor Operating Near a WallMurray, Henry Hall IV 08 June 2016 (has links)
Acoustic and aerodynamic measurements have been carried out on a rotor operating in a planar turbulent boundary layer near a wall for a variety of thrust conditions and yaw angles with respect to the inflow. At the highest thrust condition a strong flow reversal in the wall-rotor tip gap was observed. Average velocity fields filtered by the angular position of the rotor show that the flow reversal is fed by jets of fluid that tend to form below the blade as it passes by the wall. Instantaneous velocity measurements show the presence of strong vortices in the tip gap. These vortices were characterized and found to be both stronger and more numerous on the downstroke side of the tip gap. Additionally, vortices with the same handedness as the bound circulation in the blade were more numerous and only located on the downstroke side of the tip gap. Those with the opposite handedness were found to be only located on the upstroke side. Unexpectedly strong far-field acoustic response at the blade passage frequency at this highest thrust condition and is believed to be due to an interaction of the blade tip with these vortices. At moderate thrust, when the rotor was yawed toward the downstroke side the far field acoustic response at the blade passage frequency was found to increase. The opposite was true as it was yawed toward the upstroke side. At the highest thrust, however the unyawed rotor had the strongest blade passage frequency response which is believed to be due to stronger vortex-tip interaction in this case. / Master of Science
|
8 |
Evaluation of the ZDES method on an axial compressor : analysis of the effects of upstream wake and throttle on the tip-leakage flow. / Evaluation de la méthode ZDES sur un compresseur axial : analyse des effets de sillages venant de l’amont et du vannage sur le tourbillon de jeuRiera, William 27 November 2014 (has links)
L’écoulement de jeu dans les compresseurs axiaux est étudié à l’aide de la Zonal Detached Eddy Simulation (ZDES). L’objectif consiste à évaluer la capacité de méthodes hybrides URANS/LES à simuler l’écoulement de jeu d’un compresseur axial réaliste afin de mieux comprendre la physique de cet écoulement, notamment son comportement au vannage ainsi que l’effet de sillages venant du stator amont sur le rotor aval. Après avoir choisi la méthode hybride ZDES, un banc d’essai numérique est défini afin de simuler le premier rotor du compresseur de recherche CREATE. Ce banc a la particularité de pouvoir prendre en compte les effets instationnaires venant de la roue directrice d’entrée (RDE), notamment son sillage ainsi que les tourbillons générés en pied et en tête. Basé sur des critères de maillage ZDES, il est utilisé pour évaluer cette méthode comparativement aux méthodes classiques RANS et URANS. La ZDES est validée par étape jusqu’à une analyse spectrale de l’écoulement de jeu se basant sur des données expérimentales. Elle s’est révélée capable de capturer plus précisément l’intensité et la position des phénomènes instationnaires rencontrés en tête du rotor, notamment le tourbillon de jeu. Les densités spectrales de puissance analysées montrent que cela est dû en partie à une meilleure prise en compte du transfert d’énergie des grandes vers les petites structures de l’écoulement avant leur dissipation. De plus, l’écart entre les approches s’accentue lorsque le tourbillon de jeu traverse le choc en tête. Proche pompage, les effets d’interaction entre le choc, le tourbillon de jeu, la couche limite carter et le tourbillon venant de la tête de la RDE sont amplifiés. Le décollement de la couche limite carter s’accentue et une inversion locale de l’écoulement est observée. De plus, le tourbillon de jeu s’élargit et est dévié vers la pale adjacente, ce qui intensifie le phénomène de double écoulement de jeu. L’interaction du tourbillon venant de la tête de la RDE avec le choc et le tourbillon de jeu du rotor est ensuite étudiée au point de dessin. Un battement du tourbillon de jeu est rencontré lors de l’interaction de ce tourbillon avec le tourbillon de tête de la RDE, ce qui diminue le double écoulement de jeu. / The tip-leakage flow in axial compressors is studied with the Zonal Detached Eddy Simulation (ZDES). This study aims at evaluating the capability of hybrid URANS/LES methods to simulate the tip-leakage flow within a realistic axial compressor in order to better understand the involved physics, especially the behaviour of the flow near surge and the effects of stator wakes on the downstream rotor. Once the ZDES method is chosen, a numerical test bench is defined to simulate the first rotor of the research compressor CREATE. This bench takes into account the unsteady effects of the Inlet Guide Vane (IGV), such as its wake as well as vortices generated at the IGV hub and tip. It is based upon ZDES meshing criteria and is used to evaluate this method compared to classic RANS and URANS approaches. A method validation is carried out up to a spectral analysis compared to experimental data. The ZDES is capable to capture more accurately the intensity and position of the unsteady phenomena encountered in the tip region, especially the tip-leakage vortex. The power spectral densities highlight that this partly originates from a better capture of the energy transfer from large to small structures until their dissipation. The discrepancy between the methods is accentuated as the tip-leakage vortex crosses the shock. Near the surge line, the interactions between the shock, the tip-leakage vortex, the boundary layer developing on the shroud and the vortex generated by the IGV tip are amplified. The boundary layer on the shroud separates earlier and a local flow inversion occurs. Besides, the tip-leakage vortex widens and is deflected toward the adjacent blade. This strengthens the double leakage. At the design operating point, the interaction of the IGV tip vortex with the shock and the rotor tip vortex is studied. A vortex flutter is observed as the IGV tip vortex arrives on the rotor blade and stretches the rotor tip vortex. This phenomenon decreases the double leakage.
|
Page generated in 0.1316 seconds