• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • Tagged with
  • 19
  • 19
  • 19
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

System Identification of a Nonlinear Flight Dynamics Model for a Small, Fixed-Wing UAV

Simmons, Benjamin Mason 16 May 2018 (has links)
This thesis describes the development of a nonlinear flight dynamics model for a small, fixed-wing unmanned aerial vehicle (UAV). Models developed for UAVs can be used for many applications including risk analysis, controls system design and flight simulators. Several challenges exist for system identification of small, low-cost aircraft including an increased sensitivity to atmospheric disturbances and decreased data quality from a cost-appropriate instrumentation system. These challenges result in difficulties in development of the model structure and parameter estimation. The small size may also limit the scope of flight test experiments and the consequent information content of the data from which the model is developed. Methods are presented to improve the accuracy of system identification which include data selection, data conditioning, incorporation of information from computational aerodynamics and synthesis of information from different flight test maneuvers. The final parameter estimation and uncertainty analysis was developed from the time domain formulation of the output-error method using the fully nonlinear aircraft equations of motion and a nonlinear aerodynamic model structure. The methods discussed increased the accuracy of parameter estimates and lowered the uncertainty in estimates compared to standard procedures for parameter estimation from flight test data. The significant contributions of this thesis are a detailed explanation of the entire system identification process tailored to the needs of a small UAV and incorporation of unique procedures to enhance identification results. This work may be used as a guide and list of recommendations for future system identification efforts of small, low-cost, minimally instrumented, fixed-wing UAVs. / MS
12

The Effect of Leading-Edge Geometry on the Induced Drag of a Finite Wing

January 2019 (has links)
abstract: This study identifies the influence that leading-edge shape has on the aerodynamic characteristics of a wing using surface far-field and near-field analysis. It examines if a wake survey is the appropriate means for measuring profile drag and induced drag. The paper unveils the differences between sharp leading-edge and blunt leading-edge wings with the tools of pressure loop, chordwise pressure distribution, span load plots and with wake integral computations. The analysis was performed using Computational Fluid Dynamics (CFD), vortex lattice potential flow code (VORLAX), and a few wind-tunnels runs to acquire data for comparison. This study found that sharp leading-edge wings have less leading-edge suction and higher drag than blunt leading-edge wings. The blunt leading-edge wings have less drag because the normal vector of the surface in the front section of the airfoil develops forces at opposed skin friction. The shape of the leading edge, in conjunction with the effect of viscosity, slightly alter the span load; both the magnitude of the lift and the transverse distribution. Another goal in this study is to verify the veracity of wake survey theory; the two different leading-edge shapes reveals the shortcoming of Mclean’s equation which is only applicable to blunt leading-edge wings. / Dissertation/Thesis / Masters Thesis Aerospace Engineering 2019
13

Numerical modeling of a hydrofoil or a marine propeller undergoing unsteady motion via a panel method and RANS

Sharma, Abhinav, master of science in civil engineering 17 February 2012 (has links)
A computational approach to analyze the hydrodynamic performance of a hydrofoil or a marine propeller undergoing unsteady motion has been developed. In order to simulate heave and pitch motion of a hydrofoil, an unsteady boundary element method based modeling is performed. The wake of the hydrofoil is modeled by a continuous dipole sheet and determined in time by applying a force-free condition on its surface. An explicit vortex core model is adapted in this model to capture the rolling up shape and to avoid instability due to roll-up deformation of the wake. The numerical results of the developed model are compared with analytical results and those from the commercial Reynolds-Averaged Navier-Stokes solver (ANSYS/FLUENT). The results show close level of agreement with each other. The problem of flow around a marine propeller performing surge, roll and heave motion in an unbounded fluid is formulated and solved using both a vortex-lattice method and a boundary element method. A fully unsteady wake alignment algorithm is implemented into the vortex-lattice method in order to satisfy the force-free condition on the propeller wake surface. Finally, a comparative study of transient propeller forces on a propeller blade obtained from BEM and VLM (with or without fully aligned wake) is carried out and results are presented. In some cases, results from the presented methods are compared with those from RANS or other numerical methods available in the literature. / text
14

Shape and Structural Optimization of Flapping Wings

Stewart, Eric C. 11 January 2014 (has links)
This dissertation presents shape and structural optimization studies on flapping wings for micro air vehicles. The design space of the optimization includes the wing planform and the structural properties that are relevant to the wing model being analyzed. The planform design is parameterized using a novel technique called modified Zimmerman, which extends the concept of Zimmerman planforms to include four ellipses rather than two. Three wing types are considered: rigid, plate-like deformable, and membrane. The rigid wing requires no structural design variables. The structural design variables for the plate-like wing are the thickness distribution polynomial coefficients. The structural variables for the membrane wing control the in-plane distributed forces which modulate the structural deformation of the wing. The rigid wing optimization is performed using the modified Zimmerman method to describe the wing. A quasi-steady aerodynamics model is used to calculate the thrust and input power required during the flapping cycle. An assumed inflow model is derived based on lifting-line theory and is used to better approximate the effects of the induced drag on the wing. A multi-objective optimization approach is used since more than one aspect is considered in flapping wing design. The the epsilon-constraint approach is used to calculate the Pareto optimal solutions that maximize the cycle-average thrust while minimizing the peak input power and the wing mass. An aeroelastic model is derived to calculate the aerodynamic performance and the structural response of the deformable wings. A linearized unsteady vortex lattice method is tightly coupled to a linear finite element model. The model is cost effective and the steady-state solution is solved by inverting a matrix. The aeroelastic model is used to maximize the thrust produced over one flapping cycle while minimizing the input power. / Ph. D.
15

Numerical simulation of unsteady rotor/stator interaction and application to propeller/rudder combination

He, Lei, doctor of civil engineering 10 November 2010 (has links)
In this thesis, a numerical approach based on a potential flow method has been developed in order to simulate unsteady rotor/stator interaction, and to predict the unsteady performance of a propeller and its rudder. The method is first developed and tested in two-dimensions by using a boundary element method in which a front hydrofoil is moving downward, while a back hydrofoil is stationary. The wakes of the two hydrofoils are modeled by continuous dipole sheets and determined in time by applying a force free-condition on each wake surface. The wake/hydrofoil interaction is de-singularized by applying a numerical fence on the surface of the back hydrofoil. The viscous wake/hydrofoil interaction is considered by employing a viscous wake vorticity model on the rotor's wake surface. The present method is validated by comparison with analytical solutions, experimental data and by using the results from a commercial Reynolds Averaged Navier-Stokes (RANS) solver for the same set-up and conditions. The numerical approach is further extended to three-dimensions to predict the mutual interaction between a propeller and rudder. A fully unsteady wake alignment algorithm is implemented into a Vortex Lattice Method to simulate the unsteady propeller flow. The interaction between propeller and rudder is investigated in a fully unsteady manner, where a panel method is used to solve the flow around the rudder, and a vortex lattice method is used to solve the flow around the propeller. The interaction between a propeller and its rudder is considered in an iterative manner by solving the propeller and the rudder problems separately and by including the unsteady effects of one component on the other. The effect of the unsteady propeller-rudder interaction on the mean and on the unsteady propeller/rudder performance, including sheet cavitation on the rudder, is studied. / text
16

A Comparison of Euler Finite Volume and Supersonic Vortex Lattice Methods used during the Conceptual Design Phase of Supersonic Delta Wings

Guillermo-Monedero, Daniel 01 October 2020 (has links)
No description available.
17

Modeling Analysis and Control of Nonlinear Aeroelastic Systems

Bichiou, Youssef 15 January 2015 (has links)
Airplane wings, turbine blades and other structures subjected to air or water flows, can undergo motions depending on their flexibility. As such, the performance of these systems depends strongly on their geometry and material properties. Of particular importance is the contribution of different nonlinear aspects. These aspects can be of two types: aerodynamic and structural. Examples of aerodynamic aspects include but are not lomited to flow separation and wake effects. Examples of structural aspects include but not limited to large deformations (geometric nonlinearities), concentrated masses or elements (inertial nonlinearities) and freeplay. In some systems, and depending on the parameters, the nonlinearities can cause multiple solutions. Determining the effects of nonlinearities of an aeroelastic system on its response is crucial. In this dissertation, different aeroelastic configurations where nonlinear aspects may have significant effects on their performance are considered. These configurations include: the effects of the wake on the flutter speed of a wing placed under different angles of attack, the impacts of the wing rotation as well as the aerodynamic and structural nonlinearities on the flutter speed of a rotating blade, and the effects of the recently proposed nonlinear energy sink on the flutter and ensuing limit cycle oscillations of airfoils and wings. For the modeling and analysis of these systems, we use models with different levels of fidelity as required to achieve the stated goals. We also use nonlinear dynamic analysis tools such as the normal form to determine specific effects of nonlinearities on the type of instability. / Ph. D.
18

Amortecimento ativo para redução da resposta aeroelástica via fluidos eletro reológicos / Active damping to reduce the aeroelastic response via electro-rheological fluids

Nagamine, Renato Kazuki 22 November 2006 (has links)
Fenômenos aeroelásticos podem levar à drástica redução na vida útil de uma aeronave ou ainda resultam em danos severos à estrutura. Para manter as respostas dinâmicas em níveis aceitáveis técnicas como as estruturas adaptativas têm sido aplicadas. Este conceito explora a integração entre os elementos ativos (atuadores e sensores) e o controlador à estrutura. Dentre os materiais próprios para uso em estruturas adaptativas estão os fluidos eletro-reológicos e magneto-reológicos que tem se mostrado como um dos mais promissores materiais ativos. Estes materiais apresentam rápidas mudanças nas suas propriedades reológicas devido à ação de um campo elétrico ou magnético. Para sua incorporação em uma estrutura é utilizada uma viga sanduíche que tem seu comportamento dinâmico modelado através do método GHM para incorporar a dependência da freqüência dos fluidos ER/MR em um modelo estrutural no domínio do tempo. Através do acoplamento deste modelo com o método da malha de vórtices, é possível estudar a resposta aeroelástica temporal. Também é analisada a eficiência dos fluidos ER/MR no atraso da ocorrência de flutter. Isto é feito com o auxílio do método PK que determina a velocidade crítica de flutter. / Aeroelastic phenomena can lead to a drastic reduction in the fatigue life of aircraft or result in severe structural damage. To keep the dynamical responses at acceptable levels techniques such as the so-called adaptive structures have been adopted. This approach integrates active elements and controllers (actuators and sensors) to the structure. Among the materials suitable for adaptive structures are the electro-rheological (ER) and magneto-rheological fluids which are some of the most promising active materials. This kind of materials presents change in their rheological properties due to action of an external field, such as electrical or magnetic. In order to integrate these kind of fluids in the structure a sandwich beam with ER/MR fluids core is studied. The dynamical behaviour is modelled through a GHM method to incorporate the frequency dependence of the ER/MR fluids in a structural time domain model. By coupling this model to a vortex lattice model, it is possible to study the aeroelastic response in time domain. The ER/MR fluids efficiency to delay the flutter occurrence is also studied by using a PK-method that determines a critical velocity of flutter.
19

Amortecimento ativo para redução da resposta aeroelástica via fluidos eletro reológicos / Active damping to reduce the aeroelastic response via electro-rheological fluids

Renato Kazuki Nagamine 22 November 2006 (has links)
Fenômenos aeroelásticos podem levar à drástica redução na vida útil de uma aeronave ou ainda resultam em danos severos à estrutura. Para manter as respostas dinâmicas em níveis aceitáveis técnicas como as estruturas adaptativas têm sido aplicadas. Este conceito explora a integração entre os elementos ativos (atuadores e sensores) e o controlador à estrutura. Dentre os materiais próprios para uso em estruturas adaptativas estão os fluidos eletro-reológicos e magneto-reológicos que tem se mostrado como um dos mais promissores materiais ativos. Estes materiais apresentam rápidas mudanças nas suas propriedades reológicas devido à ação de um campo elétrico ou magnético. Para sua incorporação em uma estrutura é utilizada uma viga sanduíche que tem seu comportamento dinâmico modelado através do método GHM para incorporar a dependência da freqüência dos fluidos ER/MR em um modelo estrutural no domínio do tempo. Através do acoplamento deste modelo com o método da malha de vórtices, é possível estudar a resposta aeroelástica temporal. Também é analisada a eficiência dos fluidos ER/MR no atraso da ocorrência de flutter. Isto é feito com o auxílio do método PK que determina a velocidade crítica de flutter. / Aeroelastic phenomena can lead to a drastic reduction in the fatigue life of aircraft or result in severe structural damage. To keep the dynamical responses at acceptable levels techniques such as the so-called adaptive structures have been adopted. This approach integrates active elements and controllers (actuators and sensors) to the structure. Among the materials suitable for adaptive structures are the electro-rheological (ER) and magneto-rheological fluids which are some of the most promising active materials. This kind of materials presents change in their rheological properties due to action of an external field, such as electrical or magnetic. In order to integrate these kind of fluids in the structure a sandwich beam with ER/MR fluids core is studied. The dynamical behaviour is modelled through a GHM method to incorporate the frequency dependence of the ER/MR fluids in a structural time domain model. By coupling this model to a vortex lattice model, it is possible to study the aeroelastic response in time domain. The ER/MR fluids efficiency to delay the flutter occurrence is also studied by using a PK-method that determines a critical velocity of flutter.

Page generated in 0.0649 seconds