• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • Tagged with
  • 21
  • 21
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Konstrukce kráčejícího mobilního robotu / Design of walking mobile robot

Szabari, Mikuláš January 2018 (has links)
The diploma thesis deals with the construction of a walking mobile robot, which is intended for passing through a rugged or forest terrain, whose task is to collect the sample. The first part is devoted to the review of walking robots. Follow-up an analysis of two-legged and four-leg walking robot technologies and a brief overview of drives. The second part is devoted to problem analysis and design variant. The work contains 4 design variants in the form of schemes. Using the multi-criteria analysis, the variants were evaluated and the optimal variant was chosen taking into account the representative parameters. The third part is devoted to the construction of the chosen variant, it is divided into body and leg construction. The overall design is processed in the form of a virtual 3D model. In the leg construction, the design itself, but also the calculations of drives, shafts, gears and belt transmissions are solved. The end of the thesis is devoted to drawing documentation based on 3D model and economic evaluation. Follow-up and discussion with possible continuation and use in practice.
12

Design and synthesis of mechanical systems with coupled units / Conception et synthèse des systèmes mécaniques aux unités couplées

Zhang, Yang 19 April 2019 (has links)
Ce mémoire traite de nouveaux principes de conception qui sont inspirés par le couplage de deux unités représentant les différentes structures mécaniques. Les critères de conception optimale et les types d'unités combinées sont différents. Cependant, toutes les tâches sont considérées dans le couplage de ces unités. L'examen critique présenté dans le premier chapitre est divisé en trois sections en raison de la nature des problèmes traités: les robots marcheurs, les compensateurs de gravité et les robots collaboratifs. Le deuxième chapitre traite du développement de robots marcheurs à actionneur unique, conçus par couplage de deux mécanismes ayant les fonctionnants de jambe. Basée sur l'algorithme génétique, la synthèse proposée permet d'assurer la reproduction de la trajectoire obtenue à partir de la marche humaine. Par l'ajustement des paramètres géométriques des unités conçues, il devient possible non seulement d'assurer une marche du robot à des pas variables, mais également de monter les escaliers. Ensuite la conception et la synthèse des équilibreurs pour les robots sont considérés. Un costume robotisé type exosquelette permettant d'aider aux personnes transportant des charges lourdes est examiné dans le chapitre suivant La conception proposée présente une symbiose d'un support rigide et léger et d'un système de câbles monté sur ce support. L'étude et l'optimisation statique et dynamique ont conduit aux tests sur un mannequin. Le dernier chapitre propose l'étude et 'optimisation d'un système couplé, comprenant un manipulateur équilibré à commande manuelle et un robot collaboratif. Le but d'une telle coopération est de manipuler de lourdes charges avec un cobot. / This thesis deals with the design principles, which arc based on the coupling of two mechanical structures. The criteria for optimal design and the types of combined units are different. However, all the tasks are considered in coupling of given mechanical units. The critical review given in the first chapter is divided into three sections due to the nature of the examined problems: legged walking robots, gravity compensators used in robots and collaborative robots. Chapter two deals with the development of single actuator walking robots designed by coupling of two mechanisms. Based on the Genetic Algorithm, the synthesis allows one to ensure the reproduction of prescribed points of the given trajectory obtained from the walking gait. By adjusting the geometric parameters of the designed units, it becomes possible not only to operate the robot at variable steps, but also to climb the stairs. The next chapter deals with the design and synthesis of gravity balancers. A robotic exosuit that can help people carrying heavy load is the subject of chapter four. The proposed exosuit presents a symbiosis of two systems: rigid lightweight support and cable system. Static and dynamic studies and optimization are considered. Experiments are also carried out on a mannequin test bench. The last chapter presents a coupled system including a hand-operated balanced manipulator and a collaborative robot. The aim of such a cooperation is to manipulate heavy payloads with less powerful robots. Dynamic analysis of the coupled system is perfonned and methods for reducing the oscillation of the HOBM at the final phase of the prescribed trajectories are proposed.
13

Řízení pohybu robota typu hexapod / Hexapod Robot Movement Control

Žák, Marek January 2015 (has links)
This thesis discusses walking robots issues, their classification, management and construction. There are listed the most famous motion algorithms and their graphical representation. Examples of existing walking robots are also mentioned in this thesis. There are also described modifications of hexapod robot, its hardware and software. The robot is controlled through graphical user interface, which displays data from all sensors, visualises positions of all legs and allows the creation of user defined gaits and its simulations.
14

State Estimation and Limited Communication Control for Nonlinear Robotic Systems

Rehbinder, Henrik January 2001 (has links)
No description available.
15

Quadruped robot control and variable leg transmissions

Ingvast, Johan January 2006 (has links)
The research presented in this thesis regards walking of quadruped robots, and particularly the walking of the Warp1 robot. The motivation for the robot is to provide a platform for autonomous walking in rough terrain. The thesis contains six papers ranging from development tools to actuation of robot legs. The first paper describes the methods and tools made for control development. These tools feature: programming of the robot without low level coding (C-code); that the controller has to be built only once for simulation and experiments; and that names of variables and constants are unchanged through the chain of software Maple -- Matlab -- Simulink -- Real~Time~Workshop -- xPC--Target. Three controllers, each making the robot walk are presented. The first controller makes the robot walk using the crawl gait. The method uses static stability as method for keeping balance and the instantaneous trunk motions are given by a concept using the so called weight ratios. A method for planning new footholds based on the positions of the existing footholds is also proposed and the controller experimentally verified. The second walking controller shows that the robot also can walk dynamically using the trot gait. The method proposed uses information from ground contact sensors on the feet as input to control balance, instead of, which is common, inertial sensors. It is experimentally verified that Warp1 can trot from level ground onto a slope and turn around while staying balanced. The main ideas of these two walking controllers are fused in the third which enables smooth transitions between crawl and trot. The idea of using the ground contact sensors from the first controller is here used to estimate the position of the center of mass. This controller uses weight ratios in the gait crawl as well as in the dynamic gait trot. Hence, the method of using weight ratios is not only useful for static stability for which it was originally intended. The controller is experimentally verified on Warp1. The Warp1 robot weighs about 60 kg, has 0.6 m long legs with three actuated joints on each. The speed and strength is sufficient only for slow walking, even though the installed power indicates that it should be enough for faster walking. The reason is that a walking robot often needs to be strong but slow when the feet are on the ground and the opposite when in the air. This can not be achieved with the motors and transmissions currently used. A transmission called the passively variable transmission (PVT) is proposed which enhance motor capabilities of robot joints. It is elastic, nonlinear and conservative. Some general properties for elastic transmissions are derived such that they can be compared with conventional transmissions. The PVT gives strong actuation at large loads and fast actuation at small loads. The proposed transmission is compared to a conventional transmission for a specific task, and the result is that a smaller motor can be used. / QC 20100831
16

Development of a multi-platform simulation for a pneumatically-actuated quadruped robot

Daepp, Hannes Gorkin 18 November 2011 (has links)
Successful development of mechatronic systems requires a combination of targeted hardware and software design. The compact rescue robot (CRR), a quadruped pneumatically-actuated walking robot that seeks to use the benefits garnered from pneumatic power, is a prime example of such a system. This thesis discusses the development and testing of a simulation that will aid in further design and development of the CRR by enabling users to examine the impacts of pneumatic actuation on a walking robot. However, development of an entirely new dynamic simulation specific to the system is not practical. Instead, the simulation combines a MATLAB/Simulink actuator simulation with a readily available C++ dynamics library. This multi-platform approach results in additional incurred challenges due to the transfer of data between the platforms. As a result, the system developed here is designed in the fashion that provides the best balance of realistic behavior, model integrity, and practicality. An analytically derived actuator model is developed using classical fluid circuit modeling together with nonlinear area and pressure curves to model the valve and a Stribeck-Tanh model to characterize the effects of friction on the cylinder. The valve model is designed in Simulink and validated on a single degree-of-freedom test rig. This actuator model is then interfaced with SrLib, a dynamics library that computes dynamics of the robot and interactions with the environment, and validated through comparisons with a CRR prototype. Conclusions are focused on the final composition of the simulation, its performance and limitations, and the benefits it offers to the system as a whole.
17

State Estimation and Limited Communication Control for Nonlinear Robotic Systems

Rehbinder, Henrik January 2001 (has links)
No description available.
18

Čtyřnohý kráčejicí robot / Four legged walking robot

Veleba, Tomáš January 2008 (has links)
The diploma paper deal with control problems of a four legged walking robot. They endeavour to establish and partly implement the walking and control algorithms. They are divided into six parts. Individual chassis types and their advantages and drawbacks are analysed in introduction. Next part describes mechanical design of the robot and also all realised electronics facilities. The third part describes in detail sensors that are used by the robot. Following part deals with description of robot's walking. It explains individual walking phases and analyses both static and dynamic stability. Next part contains description of the robot's software facility. The software facility of the control micro-controller and the algorithm that generates walking are explained in this part. It also describes software facility of control application in computer. Exploration of the possibilities for wireless control is carried out in the last part.
19

Čtyřnohý kráčejicí robot / Four legged walking robot

Fischer, Jan January 2008 (has links)
The object of this thesis is an analysis of the possibilities of a wireless communication and a sensor‘s equipment for a four legged walking robot. The thesis is divided into three parts. In the first part there is a particular sale’s exploration in the section of the wireless communication modules. It refers to the differences among technologies in the methods of signal transmission, the technical parameters but also in the communication protocols. The next part of this thesis is focused on sensor’s equipment with the accent on the possibility of use for a four legged walking robot. It contains a short listing of sensors, which are available in the Czech Republic with division based on the type of sensing magnitude. These two parts make a base for the last part where I have chosen suitable communication modules along with sensors and realization wireless data transfer including control and visualization. The result of this thesis is the complete communication block from the user to the robot.
20

Design of a Pneumatic Artificial Muscle for Powered Lower Limb Prostheses

Murillo, Jaime 01 May 2013 (has links)
Ideal prostheses are defined as artificial limbs that would permit physically impaired individuals freedom of movement and independence rather than a life of disability and dependence. Current lower limb prostheses range from a single mechanical revolute joint to advanced microprocessor controlled mechanisms. Despite the advancement in technology and medicine, current lower limb prostheses are still lacking an actuation element, which prohibits patients from regaining their original mobility and improving their quality of life. This thesis aims to design and test a Pneumatic Artificial Muscle that would actuate lower limb prostheses. This would offer patients the ability to ascend and descend stairs as well as standing up from a sitting position. A comprehensive study of knee biomechanics is first accomplished to characterize the actuation requirement, and subsequently a Pneumatic Artificial Muscle design is proposed. A novel design of muscle end fixtures is presented which would allow the muscle to operate at a gage pressure surpassing 2.76 MPa (i.e. 400 psi) and yield a muscle force that is at least 3 times greater than that produced by any existing equivalent Pneumatic Artificial Muscle. Finally, the proposed Pneumatic Artificial Muscle is tested and validated to verify that it meets the size, weight, kinetic and kinematic requirements of human knee articulation.

Page generated in 0.0872 seconds