1 |
Characterization of light weight composite proppantsKulkarni, Mandar Chaitanya 15 May 2009 (has links)
The research objectives are to develop experimental and computational techniques to characterize and to study the influence of polymer coating on the mechanical response of walnut shell particles to be used as proppants. E3-ESEM and Zeiss Axiophot LM are used to study the cellular microstructure and feasibility of polymer infiltration and uniform coating. Three main testing procedures; single particle compression, heating tests on coated and uncoated walnut shell particles and 3-point flexure tests are undertaken. In in-situ ESEM observations on both the coated and uncoated particles showed signs of charring at about 175 – 200 ºC. Single particle compression test are conducted with random geometry particles and subsequently with four distinct shape categories to minimize the statistical scatter; flat top, round top, cone top, and high aspect ratio. Single particle tests on uniformly cut cuboid particles from walnut shell flakes are used to capture the nonlinear material response. Furthermore cyclic compression loads are imposed on flat top particles which reveal that significant permanent deformation set in even at low load levels. Computational models include Hertzian representation, 2D and 3D finite element models to simulate single coated and uncoated particles under compression. The elastic material with geometric nonlinear representation is not able to simulate the compression response observed during testing. The inelastic material representation is able to significantly improve the compression response and address the influence of geometric shape on particle response. A single uniform layer of polymer coat is introduced on the 3D models with nonlinear material definition. Coating provides a marginal improvement in load vs displacement response of the particles while increasing the ability of the particle to withstand higher loads.
|
2 |
Characterization of light weight composite proppantsKulkarni, Mandar Chaitanya 15 May 2009 (has links)
The research objectives are to develop experimental and computational techniques to characterize and to study the influence of polymer coating on the mechanical response of walnut shell particles to be used as proppants. E3-ESEM and Zeiss Axiophot LM are used to study the cellular microstructure and feasibility of polymer infiltration and uniform coating. Three main testing procedures; single particle compression, heating tests on coated and uncoated walnut shell particles and 3-point flexure tests are undertaken. In in-situ ESEM observations on both the coated and uncoated particles showed signs of charring at about 175 – 200 ºC. Single particle compression test are conducted with random geometry particles and subsequently with four distinct shape categories to minimize the statistical scatter; flat top, round top, cone top, and high aspect ratio. Single particle tests on uniformly cut cuboid particles from walnut shell flakes are used to capture the nonlinear material response. Furthermore cyclic compression loads are imposed on flat top particles which reveal that significant permanent deformation set in even at low load levels. Computational models include Hertzian representation, 2D and 3D finite element models to simulate single coated and uncoated particles under compression. The elastic material with geometric nonlinear representation is not able to simulate the compression response observed during testing. The inelastic material representation is able to significantly improve the compression response and address the influence of geometric shape on particle response. A single uniform layer of polymer coat is introduced on the 3D models with nonlinear material definition. Coating provides a marginal improvement in load vs displacement response of the particles while increasing the ability of the particle to withstand higher loads.
|
3 |
Mechanics of Light Weight Proppants: A Discrete ApproachKulkarni, Mandar 2012 May 1900 (has links)
Proppants are a specific application of granular materials used in oil/gas well stimulation. Employment of hard and soft particle mixtures is one of the many approaches availed by the industry to improve fracture resistance and the stability of the granular pack in the hydraulic fracture. Current industrial practices of proppant characterization involve long term and expensive conductivity tests. However, the mechanics governing the proppant pack response, in particular the effects due to material, shape and size of particles on the pack porosity, stiffness and particle fragmentation are not understood clearly.
The present research embodies analytical and experimental approach to model hard (ceramic) and soft (walnut shell and/or pure aluminum) proppant mixtures by taking into account polydispersity in size, shape and material type of individual particles. The hydraulic fracture condition is represented through confined compression and flowback loads. The particle interactions clearly illustrate changes in pore space as a function of pressure, mixture composition and friction. Single particle compression tests on individual particles are carried out to obtain mechanical properties which are incorporated into the finite element models and are further correlated with the compression/crush response of the mixture. The proppant pack stiffness and particle fragmentation depends strongly on the mixture composition as illustrated in the models and experiments. The flowback models demonstrated that the formation of a stable arch is essential to pack stability. Additional variables that enhance flowback resistance are identified as: addition of softer particles to a pack, softer rock surfaces and higher inter-particle friction. The computational studies also led to the discovery of better, and more efficient pack compositions such as - short and thin pure Al needles/ceramic and the pistachio shells/ceramic mixtures. These analytical results have generated great interest and are engaged in the design of experiments to formulate future proppant pack mixtures at Baker Hughes Pressure Pumping, Tomball, TX.
|
4 |
Dairy Manure Flushwater Treatment by Packed-Bed Anaerobic DigestersAdler, Neal Cary 01 June 2013 (has links)
Wastewater treatment performance of three pilot-scale packed-bed anaerobic digesters with walnut shell medium was researched for treating dairy freestall barn flushwater. Reciprocation mixing was evaluated as a means to lessen channelization in the media bed and to improve biogas production and organic matter removal at ambient temperatures. Reciprocation has been used in biological nitrogen removal systems to introduce air into the system to repeatedly oxygenate nitrifying biofilm along with mixing (Behrends et al. 2003), but the anaerobic systems benefit from mixing. Two tanks were used in each system, where one was full and one was empty at any given time. Water was repeatedly pumped from one tank to the other and back again (reciprocation). A key research objective was to determine the minimum reciprocation frequency (between 0-10 per day) while still maintaining moderate methane production and treatment performance. Broken walnut shells with a specific surface area of 360 m2/m3 were used as the packed media. Digester influent, which was pretreated to remove large solids, had the following characteristics: total solids (TS) of 5.5 g/L, volatile solids (VS) of 2.8 g/L, 5-day carbonaceous biochemical oxygen demand (cBOD5) of 800 mg/L, and chemical oxygen demand (COD) of 4340 mg/L. Average digesting liquid temperatures ranged from 14.1 to 23.6 °C. At 6-day theoretical hydraulic residence times (V/Q where V is Lliquid, which is volume of liquid occupying the digester pores, and Q is total daily influent flow) and 1 reciprocation per day, methane production was 0.060 ± 0.10 LCH4/Lliquid-day and at 10 reciprocations methane production 0.058 ± 0.14 LCH4/Lliquid-day (mean ± standard deviation of measurements over time). COD percent removals were both 51% at 6-day V/Q. Since multiple reciprocations did not appear to make a difference in methane production and treatment performance, fewer reciprocations were used in subsequent experiments. Higher flow rates were also used in subsequent experiments to accelerate sludge clogging and channelization in the walnut-shell bed and thereby allow detection of any advantage provided by reciprocation compared to an upflow reactor. At 0 and 1 reciprocations per day and 0.35 and 0.50-day V/Qs, respectively, methane production was 0.24 ± 0.08 and 0.23 ± 0.08 LCH4/Lliquid-day and COD percent removal was 17 and 22%. Over the study period of 226 days, walnut shell porosities decreased due to sludge accumulation from 0.68 and 0.64 (start-up or clean-bed) to 0.31 and 0.24 in the 1 and 0 reciprocation per day reactors. Sludge accumulation and channelization did not appear to be affected by reciprocation mixing on the scale of this study.
|
Page generated in 0.0388 seconds