1 |
Thermoakustische Oszillationen in WasserstoffsystemenWinkler, Hartmut January 2009 (has links)
Zugl.: Dresden, Techn. Univ., Diss., 2009
|
2 |
Investigation of cryogenic hydrogen storage on high surface area activated carbon equilibrium and dynamicsPaggiaro, Ricardo Gaspar January 2008 (has links)
Zugl.: München, Techn. Univ., Diss., 2008
|
3 |
Investigation of cryogenic hydrogen storage on high surface area activated carbon : equilibrium and dynamicsPaggiaro, Ricardo Gaspar January 2009 (has links)
Zugl.: München, Techn. Univ., Diss., 2008.
|
4 |
Investigation on hydrogen storage properties of Mg-based nanostructured compositesFu, Ying January 2007 (has links)
Zugl.: Stuttgart, Univ., Diss., 2007
|
5 |
Hydrogen storage by physisorption on porous materialsPanella, Barbara, January 2006 (has links)
Stuttgart, Univ., Diss., 2006.
|
6 |
Herstellung und Charakterisierung von irregulären Kohlenstoff-NanostrukturenHentsche, Melanie 13 March 2007 (has links) (PDF)
Die vorliegende Promotion beinhaltet die Untersuchung von irregulären Kohlenstoff-Nanostrukturen, die mittels Hochenergie-Kugelmahlen hergestellt wurden. Die wissenschaftliche Herausforderung besteht darin, die strukturelle Vielfalt dieser Nanostrukturen experimentell zu erfassen, zu klassifizieren und bezüglich ausgewählter Eigenschaften zu bewerten, sowie mit den Herstellungsparametern in Zusammenhang zu bringen. Die Pulver konnten nach den Mahlungen hinsichtlich ihrer Struktur in zwei grundsätzliche Typen eingeteilt werden: (I) ein Nanopulver, das aus graphitischen Stapelpaketen besteht, welche in eine amorphe Matrix eingebettet sind, (II) ein vollständig amorphisiertes Pulver. Die Strukturanalyse in Bezug auf die Mahlbedingungen (Mahlatmosphäre, Mahltemperatur) zeigt, dass die Dauer der Nanostrukturierung sowie die Anzahl und Größe von graphitischen Stapelpaketen gezielt beeinflusst werden kann. Außerdem konnten Hinweise gefunden werden, die darauf hindeuten, dass Mahlen bei tiefen Temperaturen oder unter Wasserstoffatmosphäre die Agglomeration der Nanopartikel verringern kann. Das Kugelmahlen ermöglicht es ebenfalls, die spezifische Oberfläche des Graphitpulvers von 5,5 m2/g auf 725 m2/g innerhalb von fünf Mahlstunden zu erhöhen. Der Anteil der Verunreinigungen (Fe) liegt dabei nicht höher als 0,05 wt%. Es ist jedoch zu beachten, dass sämtliche Eigenschaften stark von den verschiedenen Mahlparametern (Mahltemperatur, Mahlmaterial) abhängen. Die für Adsorptionsuntersuchungen optimalen Eigenschaften (große spezifische Oberfläche, erhöhte Reaktivität, geringe Verunreinigungen) werden schon nach kurzer Mahldauer erreicht. Wiederholungsmahlungen und Wiederholungsmessungen verschiedener Eigenschaften (spezifische Oberfläche, Verbrennungstemperatur) machen deutlich, dass die Ergebnisse reproduzierbar sind, und dass keine Alterungserscheinungen während der Lagerung unter Argonatmosphäre im Zeitraum von einem Jahr auftreten. Die Wasserstoffspeicherung an nanostrukturierten Kohlenstoffpulvern konnte nachgewiesen werden. Die maximalen Speicherkapazitäten für Temperaturen nahe 77 K lagen bei 1,5 wt%. Für niedrigere Temperaturen Tist = 35 K zeigten sich höhere Speicherkapazitäten von bis zu 5 wt%. Die Korrelation der ermittelten Speicherkapazitäten mit den theoretisch erreichbaren Werten in Bezug auf die Oberfläche der Proben zeigt, dass im Experiment deutlich höhere Werte erhalten werden. Dies lässt den Schluss zu, dass neben der Speicherung an der Oberfläche der Pulver ein weiterer Speichermechanismus innerhalb der Mikroporen der Proben stattfindet.
|
7 |
Heterogen katalysierte Hydrodehalogenierung von Borhalogeniden im Rahmen eines in sich geschlossenen BNHx-RecyclingkonzeptsReller, Christian 02 April 2014 (has links) (PDF)
Die eingereichte Dissertation mit dem Thema „Heterogen katalysierte Hydrodehalogenierung von Borhalogeniden im Rahmen eines in sich geschlossenen BNHx-Recyclingkonzepts“ beinhaltet drei für das BNHx-Recycling zentrale Reaktionsschritte: Supersäureaufschluss, Hydrodehalogenierung und den Basenaustausch. Mit Hilfe dieser drei Schritte ist es möglich, die Zersetzungsrückstände von BH3NH3(Polyaminoboran, Borazin und Polyborazylen) wieder in BH3NH3 zu überführen, ohne teure Reduktionsmittel wie LiAlH4 oder Hydrazin verwenden zu müssen. Das Verfahren ermöglichte in einem Durchlauf die Gewinnung von 60 % der eingesetzten Menge an BH3NH3 ohne eine Erzeugung von Abfallprodukten. Mit Hilfe der Chloralkalielelektrolyse kann das Verfahren an Wind- bzw. Solarkraftwerke gekoppelt und über diese alle benötigten Ausgangsstoffe hergestellt werden. Die katalytische Erzeugung von B-H-Spezies auf der Grundlage der Aktivierung von molekularem Wasserstoff ist als Schwerpunkt dieser Arbeit zu sehen. Die mechanistischen Studien lieferten ein genaueres Verständnis über fundamentale Zusammenhänge zwischen dem Lösungsmittel Et3N und der Wasserstoffbereitstellung über die N-CH2-Gruppierung sowie der Wirkungsweise des Katalysators.
|
8 |
On the design of aluminum-based complex hydride systems for chemical hydrogen storageSandig-Predzymirska, Lesia 15 October 2021 (has links)
The present study focuses on the development of Al-based systems and their examination as a medium for reversible hydrogen uptake. The first part of this thesis is dedicated to the chemistry and properties of Al-N-based materials. The synthesis, characterization, and detailed thermal decomposition studies of several aminoalanes have been described. As a result, single-crystal X-ray diffraction analyses revealed two new crystal structures of piperidinoalanes. The perspective approach employing activated aluminum and piperidine for reversible hydrogen uptake has been established. The second part of this work was focused on the modification of the properties of NaAlH4-based systems in order to generate the material with the high dissociation pressure suitable for high-pressure tank technologies. Considerable progress has been achieved in improving the hydrogen sorption properties by adding the extra aluminum powder to the Ti-catalysed NaAlH4-based system. Thus, the present study contributes to the understanding of the hydrogen sorption behavior of Al-based systems with perspectives being applicable to other related materials.:DECLARATION
ACKNOWLEDGEMENTS
DEFINITIONS AND ABBREVIATIONS
ABSTRACT
CONTENTS
LIST OF TABLES
LIST OF FIGURES
MOTIVATION AND GOALS
1 INTRODUCTION
1.1 The prospects for hydrogen-based energy systems
1.2 Requirements for the hydrogen storage system
1.3 An overview of hydrogen storage strategies
1.4 Complex hydrides as a promising hydrogen storage materials
1.4.1 Metal borohydride systems
1.4.2 Alanate-based systems
1.4.3 Nitrogen-containing complex hydrides
1.5 Summary
2 GENERAL CHARACTERIZATION METHODS
2.1 X-ray crystallography
2.1.1 X-ray powder diffraction (XRPD)
2.1.2 Single-crystal structure analysis
2.2 Thermal analysis
2.3 Quantitative chemical analysis
2.3.1 Elemental analysis
2.3.2 Inductively coupled plasma optical emission spectrometry (ICP-OES)
2.4 Nuclear magnetic resonance spectroscopy (NMR)
3 LIQUID-STATE HYDROGEN STORAGE
3.1 State of the art
3.1.1 Liquid-state hydrogen storage materials
3.1.2 Al-N-based compounds as potential materials for hydrogen storage
3.1.3 Summary
3.2 Materials preparation and experimental details
3.2.1 Chemicals and sample handling
3.2.2 Synthesis of aminoalane in diethyl ether solution with aluminum hydride
3.2.3 Preparation of activated aluminum
3.2.4 Direct hydrogenation of activated aluminum supported by amine
3.3 Results and discussion
3.3.1 Is the solid-state hydrogen storage in aminoalanes possible?
3.3.2 Optimization of the direct hydrogenation of activated aluminum supported by amine
3.3.2.1 Synthesis and characterization of triethylenediamine alane complex
3.3.2.2 Synthesis of aminoalanes via direct hydrogenation of activated aluminum and N-heterocyclic amine
3.3.3 Investigation of piperidinoalanes for reversible hydrogen uptake
3.3.3.1 Crystal structure determination of piperidinoalanes
3.3.3.2 Influence of the initial reaction parameters on the piperidinoalane formation
3.3.3.3 Reversible hydrogenation in piperidinoalane system
3.3.4 Conclusions
4 SOLID-STATE HYDROGEN STORAGE
4.1 State of the art
4.1.1 Thermodynamic tuning of the hydrides
4.1.2 Features of the sodium alanate system
4.1.3 Catalytic enhancement of reversible hydrogenation in sodium alanate
4.1.4 The relevance of the Al-TM species in doped sodium alanate
4.1.5 Summary
4.2 Materials preparation and experimental details
4.2.1 Chemicals and purification procedure
4.2.2 Activation procedure of sodium alanate via mechanochemical treatment
4.2.3 Pressure-composition-isotherm measurements with a Sieverts-apparatus
4.2.4 High-pressure differential scanning calorimetry investigation of sodium alanate samples
4.3 Results and discussion
4.3.1 Tailoring the properties of sodium alanate-based system with the help of Ti-additive
4.3.2 Influence of the aluminum addition on the sorption behavior of Ti-doped sodium alanate
4.3.3 High-pressure DSC study of hydrogen sorption properties of doped sodium alanate system
4.3.4 Conclusions
5 SUMMARY AND CONCLUSIONS
RECOMMENDATIONS AND OUTLOOK
REFERENCES
SUPPORTING INFORMATION
Appendix A
Appendix B
Appendix C
Publications
|
9 |
Heterogen katalysierte Hydrodehalogenierung von Borhalogeniden im Rahmen eines in sich geschlossenen BNHx-RecyclingkonzeptsReller, Christian 28 March 2014 (has links)
Die eingereichte Dissertation mit dem Thema „Heterogen katalysierte Hydrodehalogenierung von Borhalogeniden im Rahmen eines in sich geschlossenen BNHx-Recyclingkonzepts“ beinhaltet drei für das BNHx-Recycling zentrale Reaktionsschritte: Supersäureaufschluss, Hydrodehalogenierung und den Basenaustausch. Mit Hilfe dieser drei Schritte ist es möglich, die Zersetzungsrückstände von BH3NH3(Polyaminoboran, Borazin und Polyborazylen) wieder in BH3NH3 zu überführen, ohne teure Reduktionsmittel wie LiAlH4 oder Hydrazin verwenden zu müssen. Das Verfahren ermöglichte in einem Durchlauf die Gewinnung von 60 % der eingesetzten Menge an BH3NH3 ohne eine Erzeugung von Abfallprodukten. Mit Hilfe der Chloralkalielelektrolyse kann das Verfahren an Wind- bzw. Solarkraftwerke gekoppelt und über diese alle benötigten Ausgangsstoffe hergestellt werden. Die katalytische Erzeugung von B-H-Spezies auf der Grundlage der Aktivierung von molekularem Wasserstoff ist als Schwerpunkt dieser Arbeit zu sehen. Die mechanistischen Studien lieferten ein genaueres Verständnis über fundamentale Zusammenhänge zwischen dem Lösungsmittel Et3N und der Wasserstoffbereitstellung über die N-CH2-Gruppierung sowie der Wirkungsweise des Katalysators.:1 Einleitung und Motivation 8
2 Literaturteil 15
2.1 Borazan (AB) Zersetzung 15
2.2 Regenerierung der Zersetzungsprodukte 17
2.3 Gemeinsamkeiten und Unterschiede der Recyclingverfahren 20
2.3.1 Supersäure-Aufschluss zur Herstellung von BCl3 und BBr3 aus BNHx-Abfall 22
2.3.2 Bekannte Verfahren zur Herstellung von BCl3 23
2.3.3 Bekannte Verfahren zur Herstellung von BBr3 24
2.3.4 Basenaustausch zwischen Trialkylamin-Boranen und NH3 24
2.4 Hydrodehalogenierung 26
2.4.1 Gasphasen-Verfahren ohne Verwendung von Aminen als Hilfsbase 28
2.4.2 Flüssigphasen-Verfahren mit Aminen als Hilfsbase 31
2.4.3 Mechanistische Betrachtung 34
2.4.4 Hydrodehalogenierung von Borhalogeniden mit homogenen Katalysatoren 37
2.5 Amorphe Nickelboride als heterogene Katalysatoren 38
2.5.1 Synthese des amorphen Nickelborids 40
2.5.2 Angewandte Synthese- und Charakterisierungsmöglichkeiten zur Darstellung und Charakterisierung von amorphen Nickelboriden 41
2.5.3 Bekannte Hydrodehalogenierungen mit Nickelborid-Katalysatoren 47
2.5.4 Bekannte Nickelboride als Wasserstoffspeichermaterial 47
2.5.5 Nickelboranat (Ni(BH4)2) – Das wasserstoffreichste Nickelborid? 48
2.6 Heterogene Katalyse am Beispiel der Hydrodehalogenierung von Amin-BX3-Addukten (X=Cl, Br, I) in flüssiger Phase (Et3N) 51
2.6.1 Stofftransport innerhalb eines Drei-Phasen-Slurry-Reaktors 51
2.7 Methoden zur Bestimmung einer Katalysatorvergiftung (TPR) und zur Bestimmung der katalytischen Aktivität (TDS) des amorphen Nickelborids 55
2.7.1 Temperaturprogrammierte Reduktion (TPR) 55
2.7.2 Temperaturprogrammierte Desorption (TDS) 58
3 Ergebnisteil und Diskussion 59
3.1 Charakterisierung von amorphen Nickelboriden der allgemeinen Zusammensetzung NixByHz 59
3.1.1 Bestimmung der katalytischen Produktivität und der Aktivität am Beispiel der Hydrodehalogenierung von Et3NBCl3 59
3.1.2 Bestimmung des Ni/B-Verhältnisses mittels ICP-OES 61
3.1.3 Photoelektronenspektroskopie (XPS) -Bestimmung der Elementzusammensetzung an der Katalysatoroberfläche 62
3.1.4 TPR-Nachweis für das Vorhandensein oxidierter Metall-Spezies im Material 70
3.1.5 DSC-Untersuchung der Phasenumwandlung 73
3.1.6 TPD-Untersuchung der Wasserstoffabgabe 75
3.1.7 Wiederbeladung des Materials mit Wasserstoff (Zyklenstabilität) 81
3.1.8 PXRD-Röntgenpulverdiffraktometrie 84
3.1.9 IR-Spektroskopische Untersuchung zur Aufklärung der Bindungssituation des Wasserstoffs in amorphen Nickelboriden 90
3.1.10 TEM- und REM-Aufnahmen zur Bestimmung der Morphologie von amorphem Nickelborid 94
3.1.11 Bestimmung der BET-Oberfläche durch N2-Physisorption (T=-196 °C) 97
3.1.12 Zusammenfassung der Ergebnisse der Katalysatoraufklärung 100
3.2 BNHx-Abfall Recycling und die Wiedergewinnung von BH3NH3 102
3.3 Die Herstellung von BX3 (X= Cl, Br) aus BNHx –Abfall 102
3.3.1 Supersäure-Aufschluss von Polyaminoboran (BH2NH2)x mit AlCl3/HCl/CS2 und AlBr3/HBr/CS2 103
3.3.2 Supersäure- Aufschluss von Borazin AlCl3/HCl/CS2 106
3.3.3 Supersäure-Aufschluss von stark vernetztem Polyborazylen (PB) mit den Systemen AlCl3/HCl/CS2 und AlBr3/HBr/CS2 108
3.3.4 Zusammenfassung der Ergebnisse der vorgestellten Aufschlussverfahren 112
3.3.5 Mechanistische Betrachtungen zum Supersäure-Aufschluss des BNHx-Abfalls 113
3.4 Reaktionstechnische Untersuchungen zur Hydrode-halogenierung von Borhaliden des Typs BX3 (Cl, Br, I) 116
3.4.1 Stofftransportphänomene innerhalb der heterogen katalysierten Hydrodehalogenierung 117
3.4.2 Diffusion der Reaktanten in der flüssigen Phase zum Katalysator 119
3.4.3 Wechselwirkungseinflüsse der Addukte Et3NBCl3, Et3NBHCl2, Et3NBH2Cl und Et3NBH3 auf den Katalysator 122
3.4.4 Zusammenfassung der Ergebnisse aus den Stofftransport-Untersuchungen 123
3.5 Katalytische Hydrodehalogenierung von Et3NBCl3 123
3.5.1 Verfolgung der Reaktion über die Probenentnahme der Flüssigphase und Konzentrationsbestimmung mittels 11B NMR-Spektroskopie 124
3.5.2 Bestimmung der Geschwindigkeitskonstanten durch die Verwendung der Methode der Anfangsgeschwindigkeit 133
3.5.3 Katalytische Hydrodehalogenierung anderer Et3NBX3 (X=Br,I) Addukte 134
3.5.4 Nebenreaktionen – Eine Frage von Temperatur und Druck 138
3.6 Reaktionsmechanismus-Aufklärung am Beispiel der Hydrodehalogenierung von Et3NBCl3 145
3.6.1 Die Rolle des tertiären Amins 146
3.6.2 Die Rolle des Katalysators 154
3.6.3 Markierungsexperimente mit schwerem Wasserstoff (D2) 158
3.6.4 Einfluss von Radikalstartern auf die Reaktionsgeschwindigkeit der HDC 162
3.7 Disproportionierung von Et3NBH2Cl durch BCl3-Überschuss 165
3.8 Basenaustausch- Synthese von BH3NH3 aus Et3NBH3 und NH3 167
4 Thermodynamische Bewertung beider Recycling-Verfahren (Cl und Br) auf der Basis der Standard-Reaktionsenthalpien 170
5 Zusammenfassung der Ergebnisse 176
5.1 Amorphe Nickelboride 176
5.2 Supersäureaufschluss 178
5.3 Hydrodehalogenierung 178
5.4 Basenaustausch 180
5.5 Durchführung eines vollständigen Zyklus: Von der Dehydrierung bis zur Synthese von BH3NH3 180
5.6 Bewertung des Recyclingprozesses- Kopplung des Verfahrens mit einer Chloralkalielektrolyse 181
6 Ausblick 184
7 Anhang 185
7.1 Experimenteller Teil 186
7.1.1 Herstellung des BNHx-Abfalls (spent fuel) 186
7.1.2 Supersäure-Aufschluss des BNHx-Abfalls mit dem System AlCl3/HCl/CS2 187
7.1.3 Supersäure-Aufschluss des BNHx-Abfalls mit dem System AlBr3/HBr/CS2 189
7.1.4 Bestimmung der Donor-Akzeptor-WW in Bortrihalid- Trialkylaminkomplexen 190
7.2 Synthese des amorphen Nickelboridkatalysators 198
7.2.1 Probenvorbereitung und Analyseparameter für die einzelnen Analysemethoden 200
7.3 Synthese von wasserstoffreichem Nickelborid unter wasserfreien Bedingungen 203
7.4 Hydrodehalogenierung 204
7.4.1 Experimente für den Katalysatorvergleich in Kapitel 3.1.1 205
7.4.2 Hydrodehalogenierungsexperimente aus Kapitel 3.5 205
7.4.3 Experimente mit Probenentnahme aus Kapitel 3.4 206
7.4.4 Hydrodehalogenierung mit anderen Borhalogenid-Addukten (Et3NBBr3, Et3NBI3) aus Kapitel 3.5.3 206
7.4.5 Hydrodechlorierungsexperimente mit Me2EtN und Me3N 206
7.4.6 Markierungsexperimente mit schwerem Wasserstoff siehe Kapitel 3.6.3 207
7.4.7 Testexperiment Imminiumsalzbildung 207
7.4.8 Nebenreaktionen der Hydrodehalgenierung durch thermische Zersetzung der Addukte 208
7.5 Disproportionierung 209
7.6 Basenaustausch zwischen Et3NBH3 und NH3 210
7.7 Durchführung eines vollständigen Recycling-Zyklus 211
7.7.1 Die Dehydrierung von BH3NH3 (Herstellung von Polyborazylen) 211
7.7.2 Supersäureaufschluss des Polyborazylens 211
7.7.3 Hydrodechlorierung von BCl3 213
7.7.4 Basenaustausch-Experiment 214
8 Kalorimetrie –Bestimmung thermodynamischer Stoffdaten 215
9 NMR-Daten ausgewählter Zersetzungsprodukte von Et3NBX3-Addukten 216
10 Verzeichnisse 217
10.1 Abkürzungsverzeichnis 217
10.2 Tabellenverzeichnis 219
10.3 Abbildungsverzeichnis 221
11 Liste verwendeter Chemikalien 227
12 Versicherung 228
13 Literaturverzeichnis 229
|
10 |
Herstellung und Charakterisierung von irregulären Kohlenstoff-NanostrukturenHentsche, Melanie 18 December 2006 (has links)
Die vorliegende Promotion beinhaltet die Untersuchung von irregulären Kohlenstoff-Nanostrukturen, die mittels Hochenergie-Kugelmahlen hergestellt wurden. Die wissenschaftliche Herausforderung besteht darin, die strukturelle Vielfalt dieser Nanostrukturen experimentell zu erfassen, zu klassifizieren und bezüglich ausgewählter Eigenschaften zu bewerten, sowie mit den Herstellungsparametern in Zusammenhang zu bringen. Die Pulver konnten nach den Mahlungen hinsichtlich ihrer Struktur in zwei grundsätzliche Typen eingeteilt werden: (I) ein Nanopulver, das aus graphitischen Stapelpaketen besteht, welche in eine amorphe Matrix eingebettet sind, (II) ein vollständig amorphisiertes Pulver. Die Strukturanalyse in Bezug auf die Mahlbedingungen (Mahlatmosphäre, Mahltemperatur) zeigt, dass die Dauer der Nanostrukturierung sowie die Anzahl und Größe von graphitischen Stapelpaketen gezielt beeinflusst werden kann. Außerdem konnten Hinweise gefunden werden, die darauf hindeuten, dass Mahlen bei tiefen Temperaturen oder unter Wasserstoffatmosphäre die Agglomeration der Nanopartikel verringern kann. Das Kugelmahlen ermöglicht es ebenfalls, die spezifische Oberfläche des Graphitpulvers von 5,5 m2/g auf 725 m2/g innerhalb von fünf Mahlstunden zu erhöhen. Der Anteil der Verunreinigungen (Fe) liegt dabei nicht höher als 0,05 wt%. Es ist jedoch zu beachten, dass sämtliche Eigenschaften stark von den verschiedenen Mahlparametern (Mahltemperatur, Mahlmaterial) abhängen. Die für Adsorptionsuntersuchungen optimalen Eigenschaften (große spezifische Oberfläche, erhöhte Reaktivität, geringe Verunreinigungen) werden schon nach kurzer Mahldauer erreicht. Wiederholungsmahlungen und Wiederholungsmessungen verschiedener Eigenschaften (spezifische Oberfläche, Verbrennungstemperatur) machen deutlich, dass die Ergebnisse reproduzierbar sind, und dass keine Alterungserscheinungen während der Lagerung unter Argonatmosphäre im Zeitraum von einem Jahr auftreten. Die Wasserstoffspeicherung an nanostrukturierten Kohlenstoffpulvern konnte nachgewiesen werden. Die maximalen Speicherkapazitäten für Temperaturen nahe 77 K lagen bei 1,5 wt%. Für niedrigere Temperaturen Tist = 35 K zeigten sich höhere Speicherkapazitäten von bis zu 5 wt%. Die Korrelation der ermittelten Speicherkapazitäten mit den theoretisch erreichbaren Werten in Bezug auf die Oberfläche der Proben zeigt, dass im Experiment deutlich höhere Werte erhalten werden. Dies lässt den Schluss zu, dass neben der Speicherung an der Oberfläche der Pulver ein weiterer Speichermechanismus innerhalb der Mikroporen der Proben stattfindet.
|
Page generated in 0.1013 seconds