• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 33
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 82
  • 82
  • 41
  • 32
  • 23
  • 23
  • 16
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

An overall model of the combustion of a single droplet of kraft black liquor

Kulas, Katherine A. January 1990 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Science and Technology, 1990. / Bibliography: leaves 125-128.
72

The effect of liquor composition on the rate of reaction of a lignin model compound (acetovanillone) under oxygen-alkali conditions

Mih, Jer-Fei, January 1982 (has links)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1982. / Bibliography: leaves 77-81.
73

Alkaline pulping deadload reduction studies in chemical recovery system /

Chandra, Yusup. January 2004 (has links) (PDF)
Thesis (M.S.)--Chemical Engineering, Georgia Institute of Technology, 2005. / Empie, Jeff, Committee Chair ; Banerjee, Sujit, Committee Member ; Deng, Yulin, Committee Member. Includes bibliographical references.
74

The use of saccharinic acids from black liquor as a plasticizer for glassine paper /

Reed, Robert W. January 1939 (has links)
Thesis (M.S.)--Institute of Paper Chemistry, Lawrence College, 1939. / Includes bibliographical references (p. 75-77).
75

Biochemical oxygen demand reduction of semi-chemical neutral sulfite waste by heat hydrolysis

Butler, Robert George 11 May 2010 (has links)
The object or this experiment was to determine if and to what extent the B.O.D. of S.N.W. waste could be reduced by Heat Hydrolysis. This process gave B.O.D. reduction up to 80 percent when used on sulfite waste at Oregon State College and it was hoped that similar results could be obtained using S.N.W. liquor. The exper1mental part of the investigation was conducted to determine (1) it the B.O.D. content of S.N.W. liquor could be reduced by Heat Hydrolysis; (2) if pH, dilution and the addition of oxygen were factors that affected the reduction of B.O.D. These factors were determined by adjusting the raw liquor to the desired concentration and cooking the liquor in a closed container until certain conditions were obtained, namely, that of constant pressure with constant temperature. Ana1ysis of the raw and cooked liquor consisted of determining pH, total solids, and B.O.D., while analysis of the gas created during the cook was limited to the total amount of gas created and the amount of CO₂, CO, O₂ and H₂S in the gas. Four different series of cooks were conducted on each sample. They were, Neutral (raw liquor), Acid (raw liquor pH adjusted, Neutral-Oxygen added (raw liquor with oxygen added) and Ac1d-0xygen added (raw liquor pH adjusted with oxygen added). The samples used were 7OO ml., 465 ml., dilution 1:1 (232 ml. liquor plus 232 ml. distilled water) and dilution 2:1 (310 ml. distilled water plus 155 ml. liquor. / Master of Science
76

Alum treatment of caustic wash from chlorine bleached kraft pulp

Hart, Richard Carl January 1959 (has links)
The purpose of this investigation was to continue the color reduction study of alum treatment of caustic wash from chlorine bleached kraft pulp, to determine if a double tray Dorr thickener could be used to settle the coagulated waste, and to determine if a centrifugal separator could be used to dewater the sludge from the Dorr underflow. Approximately 5000 gallons of caustic wash from chlorine bleached kraft pulp was used for each phase of this investigation. The raw waste feed flow rate was varied from 1750 pounds per hour to 2499 Pounds per hour. The alum slurry flow rate was varied from 39 Pounds per hour to 60 pounds per hour. The hydrochloric acid flow rate remained constant at approximately five pounds per hour. The raw waste was acidified with 38 percent hydrochloric acid to a pH of 6.0, and treated with alum sulfate slurry to coagulate the solids in the waste. The coagulated solids were concentrated in a double tray Dorr thickener. The percent of insoluble solids in the Dorr underflow varied from 0.65 to 1.35. The concentrated solids were fed to a Merco centrifugal separator where the insoluble solids were concentrated in approximately equal proportions in the Merco overflow and underflow. / Master of Science
77

Computational modeling of falling liquid film free surface evaporation

Doro, Emmanuel O. 21 June 2012 (has links)
A computational model is developed to investigate fundamental flow physics and transport phenomena of evaporating wavy-laminar falling liquid films of water and black liquor. The computational model is formulated from first principles based on the conservation laws for mass, momentum, energy and species in addition to a phase transport equation for capturing interface deformation and evolution. Free surface waves are generated by monochromatic perturbation of velocity. Continuum models for interfacial evaporation define source terms for liquid vaporization and species enrichment in the conservation laws. A phenomenological crystallization model is derived to account for species depletion due to salt precipitation during black liquor falling film evaporation. Using highly resolved numerical grids on parallel computers, the computational model is implemented to analyze the dynamics of capillary separation eddies in low Reynolds number falling films, investigate the dominant mechanisms of heat transfer enhancement in falling films at moderately high Reynolds numbers and study the fundamental wave structures and wave induced transport in black liquor falling films on flat and cylindrical walls. From simulation results, a theory based on the dynamics of wavefront streamwise pressure gradient is proposed to explain interfacial waves interaction that give rise to multiple backflow regions in films dominated by solitary-capillary waves. The study shows that the mechanism of heat transfer enhancement in moderately high Reynolds number films follows from relatively lower conduction thermal resistance and higher crosswise convective transport at newly formed intermediate wavefronts. Interfacial phenomena such as wave-breaking and vapor entrainment observed in black liquor falling films is explained in terms of a mechanistic theory based on evolution of secondary instabilities and large amplitude wave force imbalances.
78

An investigation of the role of recycled black liquor in sulfate pulping

Mattson, Victor Frank 01 January 1954 (has links)
No description available.
79

The depletion of nitric oxide by reaction with molten sodium carbonate and sodium carbonate/sodium sulfide mixtures

Thompson, Laura M. 01 January 1995 (has links)
No description available.
80

Pressure Effects on Black Liquor Gasification

Young, Christopher Michael 03 July 2006 (has links)
Gasification of black liquor is an alternative to the combustion of black liquor, which is currently the dominant form of chemical recovery in the paper industry. Gasification of black liquor offers the possibility of higher thermal efficiencies than combustion, reducing manufacturing costs and creating new revenue streams through a forest biorefinery. Pressurizing the gasification reactor further enhances the efficiency advantage of gasification over combustion. This study uses a pressurized entrained flow reactor (PEFR) to study black liquor gasification behavior under pressures, temperatures, and heating rates similar to those of next-generation high-temperature black liquor gasifiers. The effects of pressure on black liquor char morphology, gasification rates, pyrolysis carbon yields, and sulfur phase distribution were studied. These characteristics were investigated in three main groups of experiments at 900oC: pyrolysis (100% N2), gasification with constant partial pressure (0.25 bar H2O and 0.50 bar CO2), and gasification with constant mole fraction (10% CO2, 2% H2O, 1.7% CO, 0.3% H2), under five, ten, and fifteen bar total pressure. It was found that pressure had an impact on the char physical characteristics immediately after the char entered the reactor. Increasing pressure had the effect of decreasing the porosity of the chars. Pressure also affected particle destruction and reagglomeration mechanisms. Surface areas of gasification chars decreased with increasing pressures, but only at low carbon conversions. The rate of carbon conversion in gasification was shown to be a function of the gas composition near the particle, with higher levels of inhibiting gases slowing carbon conversion. The same phenomenon of product gas inhibition observed in gasification was used to explain carbon conversions in pyrolysis reactions. Sulfur distribution between condensed and gas phases was unaffected by increasing total pressure in the residence times investigated. Significant amounts of sulfur are lost during initial devolatilization. With water present this gas phase sulfur forms H2S and did not return to the condensed phase.

Page generated in 0.067 seconds