491 |
Improving the Efficiency of Thermal Energy Usage in Residential Buildings by Heat Recovery from WastewaterJain, Pranjal, Alturkmani, Khaled January 2021 (has links)
This study aims to rationalize the consumption of thermal energy in residential buildings by recovering heat from wastewater inside the building before entering the central sewage network outside the building, by conducting an analytical study for a residential tower in Syria to find out the coverage percentage of the heat energy recovered from wastewater for the heating and domestic hot water loads needed for the tower, and calculating the percentage of reduction in carbon dioxide (CO2) gases. It is a simple technology as the thermal recovery system consists of three main components, which are in order: a wastewater tank, heat exchangers, and a heat pump. The research begins with an introduction that consists of the importance of wastewater and the waste heat energy it carries. After that, there are some case studies, research problem, its importance, the aim of the research, and finally the research methodology. In the first chapter, we talked about the concept of heat recovery from wastewater in general, methods of heat recovery, and the most important advantages and disadvantages of this process. It also includes an identification of the main parts used in this technology and how it works, especially the exchangers and the heat pump. This chapter also addresses the problem of forming a layer of biofilms on the surface of heat exchangers from the wastewater side and the most important methods used to treat it. We move on to the second chapter, in which we review the most important facilities for heat recovery from wastewater that have been viewed. Then comes the third chapter in which the heat recovery process was conducted for a nine storey residential tower in Syria, each floor has four apartments, where we first calculated the rate of wastewater flow for the entire tower, and we proposed a heat recovery system (physical model) inside the tower. Then the mathematical equations for heat recovery and the solution of these equations were developed based on some necessary assumptions needed in the solution process to know the most important results desired in this field. It also included the calculation of the coverage ratio of the heat energy recovered from the wastewater for the domestic hot water and heating loads, as well as the calculation of the mass and percentage of the reduction of carbon emitted to the atmosphere. Then simple economic feasibility was also conducted in this chapter to know the daily financial savings as a result of using this technology. The research ends with the most important conclusions and future research that have been reached and the conclusion of the research. The most important results show that the average coverage percentage of heat energy recovered from wastewater for heating load in residential buildings ranges between [30-56%]. It was also found that the average coverage percentage of heat energy recovered from wastewater for domestic hot water load ranges between [65-100%].
|
492 |
Chemical Modifications of Hollow Silica Microspheres for the Removal of Organic Pollutants in Simulated WastewaterTorano, Aniela Zarzar 05 1900 (has links)
Aqueous industrial effluents containing organic pollutants, such as textile dyes and crude oil, represent environmental and human health concerns due to their toxicity and possible carcinogenic effects. Adsorption is the most promising wastewater treatment method due to its efficiency, ease of operation, and low cost. However, currently used adsorbents have either high regeneration costs or low adsorption capacities. In this work, new organic/inorganic hybrids based on hollow silica microspheres were successfully synthesized, and their ability to remove Methylene Blue from wastewater and crude oil from simulated produced water was evaluated.
By employing four different silanes, namely triethoxy (octyl) silane, triethoxy (dodecyl) silane, trichloro (octadecyl) silane, and triethoxy (pentafluorophenyl) silane, hydro and fluorocarbons were grafted onto the surface of commercially available silica microspheres. These silica derivatives were tested as adsorbents by exposing them to Methylene Blue aqueous solutions and synthetic produced water. Absorbance and oil concentration were measured via a UV/Vis Spectrophotometer and an HD-1000 Oil-in-Water Analyzer respectively. Methylene Blue uptake experiments showed that increasing the adsorbent dosage and decreasing initial dye concentration might increase adsorption percentage. On the other hand, adsorption capacities were improved with lower adsorbent dosages and higher initial dye concentrations. Varying the initial solution pH, from pH 5 to pH 9, and increasing ionic strength did not seem to have a significant impact on the extent of adsorption of Methylene Blue. Overall, the silica derivative containing aromatic functional groups, Caro, was proven to be the most effective adsorbent due to the presence of π-π and cation-π interactions in addition to the van der Waals and hydrophobic interactions occurring with all four adsorbents. Although the Langmuir Model did not accurately represent the equilibrium data, it produced consistent maximum adsorption values and adsorption equilibrium constants. Preliminary experiments demonstrated the potential to recover and reuse the silica microspheres by washing with NaOH and organic solvents.
The preferential adsorption of oil micro-droplets onto the surface of functionalized hollow silica microspheres was evidenced. However, preparing synthetic produced water that was stable enough to carry out kinetics experiments remained a challenge.
|
493 |
Removal and Utilization of Wastewater Nutrients for Algae Biomass and BiofuelsGriffiths, Erick W. 01 December 2009 (has links)
The Logan City Environmental Department operates a facility that consists of 460 acres of fairly shallow lagoons (~ 5'deep) for biological wastewater treatment that meets targets for primary and secondary treatments (solids, biological oxygen demand (BOD), and pathogen removal). Significant natural algal growth occurs in these lagoons, which improves BOD removal through oxygenation and also facilitates N removal through volatilization as ammonia under high pH conditions created by algal growth. Phosphorus, however, is non-volatile and stays in the water and likely cycles in and out of algal cells as they grow and die in the lagoons. In the near future, the regulatory limits on phosphorus released from the Logan wastewater treatment facility are likely to become significantly lower to counter potential downstream eutrophication. One way to potentially lower phosphorus levels in the wastewater effluent is through management of algal growth in the lagoons. As mentioned above, algae growth naturally occurs in the treatment lagoons and if the algal biomass is harvested when growth yields are highest, the phosphorus contained in the cells could be removed to obtain phosphorus-free water. The algal biomass could then be used for production of biofuels. This research focuses on laboratory and pilot assessments to show the ability of algae indigenous to the Logan lagoons to uptake phosphorus and produce biomass that can be used for biofuel production.
|
494 |
Cationic Starch Synthesis, Development, and Evaluation for Harvesting Microalgae for Wastewater TreatmentAnthony, Renil John 01 May 2013 (has links)
In the quest for a feedstock for the production of biofuels, microalgae are showing potential. High photosynthetic efficiency, combined with high lipid content and low fresh water requirement, has contributed to the 'biofuels feedstock' status of microalgae. In some communities, microalgae have also been cultivated in wastewater in facultative lagoons to remove phosphorus and nitrogen through the growth of microalgae. With such systems in place, complete biological wastewater treatment can be achieved and the harvested microalgae could provide feedstock for biodiesel and various other bioproducts.
Due to small cell size, low culture concentrations, and the electrostatic repulsive forces that keep the cells in suspension, harvesting microalgae entails high energy inputs and associated high costs. Of the several harvesting methods tested, chemical precipitation has been shown to be the only method to harvest microalgae on a large scale. Although effective in wastewater treatment, the use of inorganic metal coagulants for microalgae harvesting leads to high dosage requirements, excess volume of sludge, and high costs, and due to the presence of associated metal hydroxide, the harvested biomass is unsuitable as feedstock for bioproducts.
The drawbacks of inorganic coagulants for microalgae harvesting can be overcome by using cationic starch. Corn and potato starch were cationized using 3-methacryloyl amino propyl trimethyl ammonium chloride and biogenic amines. Flocculation efficiencies of the cationic starches were tested in a jar test apparatus using single strain microalga, Scenedesmus obliquus, and mixed culture wastewater from the Logan City, Utah lagoons. Cationic starches showed better or comparable removal of total suspended solids compared to aluminum sulfate. Total phosphorus removal efficiencies for cationic starches were lower compared to aluminum sulfate. Effect of cationic starch harvested and alum harvested S. obliquus on biodiesel, acetone, butanol, ethanol production, and Escherichia coli growth was also studied. Results suggested significantly higher yields of bioproducts when cationic starch was used to harvest microalgae and the biomass was used as feedstock.
Cationic starches are an organic, sustainable, and renewable form of coagulant/flocculant. The use of cationic starch for harvesting microalgae eliminates the need for metal salts while enhancing the production of algae-based bioproducts. Cationic starch along with advanced technologies in the processing of microalgae is the way forward in the realization of the “microalgae to biofuels” initiative.
|
495 |
Measuring Nitrogen Transformation in Wastewater Impacted Streams Using In-Situ Benthic ChambersBeltran, Makenzi 01 May 2019 (has links)
Acrylic chambers and metal frames were installed at the sediment-water interface of streams impacted by the effluent from wastewater reclamation facilities in order to determine nitrogen rates for nitrification, denitrification, assimilation, ANAMMOX, and DNRA. Each chamber was dosed with an isotopic form of nitrate (15NO3 - ), and both isotopic (15N) and non-isotopic (14N) samples were collected. The project locations included East Canyon Creek near the East Canyon Wastewater Reclamation Facility in Park City, Utah and Box Elder Creek near the Brigham City Wastewater Treatment Plant in Brigham City, Utah. Separate chamber measurements were conducted upstream and downstream of each wastewater reclamation facility in order to determine the impact of the wastewater effluent on the stream. At the conclusion of the study, significant rates for both traditional (nitrification, denitrification, assimilation) and non-traditional nitrogen transformations (DNRA, ANAMMOX) were found at various locations. Specific transformations were found exclusively upstream or exclusively downstream of the wastewater treatment plant. Transformations that were found both upstream and downstream of the treatment plants were not significantly different, indicating no impact from the WWTPs on nitrogen transformations. Additionally, the use of isotopic nitrogen for the study did not prove necessary for determining nitrification and denitrification rates.
|
496 |
Water Allocation for Agricultural Use Considering Treated Wastewater, Public Health Risk, and Economic IssuesAl-Juaidi, Ahmed E. 01 May 2009 (has links)
Increasing demand on limited water resources calls for more efficient and improved approaches to maximize the benefits of water use. Typically, agricultural water use has the largest share among all water use sectors. Therefore, finding the best agricultural water management alternatives to maximize profit and reduce financial and other related risks under limited water availability is essential. Treated wastewater is an important alternative source of agricultural water which has the potential to reduce the stress on freshwater sources from urban and industrial sectors. Thus, further research on optimal agricultural water management is needed to find the best management alternatives that address profitability and reduce stress on freshwater supplies, and related risks, by considering the potential use of treated wastewater when available. The overall goal of this work is to address this research need through an integrated methodology that uses irrigation, economics, and environmental and public health principles. This dissertation consists of three parts. The analysis in the first part determines the optimal crop pattern that maximizes profit under limited water supply that can be applied at regional scale farming operations. The goal is to find different alternatives of land and crop patterns that increase profit and reduce financial risk of not achieving a given revenue target. The second part extends the work of the first part to include the use of treated wastewater to reduce the stress on freshwater sources while maximizing profitability and minimizing public health and environmental concerns. The third part evaluates the economic benefits and limitations of using treated wastewater for agriculture on the urban and industrial sectors. This part also discusses other alternatives such as desalination that increase the net economic benefits, reduce the price of water, and assesses the needs in the institutional setting to encourage the use of treated wastewater in agriculture. The Bear River Valley of Utah was used as the study area for the first part of the work. The results showed that crop rotation leads to larger risk decrease more than crop monoculture and diversification cropping systems. Thus, alfalfa-wheat rotation has significant risk advantages over monoculture production and diversification cropping because of enhanced yield and price offsetting ability. The second part of the study used data and information from the Gaza Strip, Palestine, to demonstrate the potential use of treated wastewater given the severe water shortage facing this region. The tradeoff analysis from this work showed that profitability and economic efficiency of water use can be increased significantly compared to the existing conditions through the use of treated wastewater. Groundwater extraction in Gaza can be reduced from 57 to 36 million m3 allowing the corresponding areas of groundwater table below mean sea level to decrease from 76 km2 to 32 km2 as a result of using treated wastewater, indicating significant aquifer recovery. The final part of the analysis also used the Gaza Strip as the case study. The results showed that the benefits of using treated wastewater increase over time as demands increase and water becomes scarce, but the economic value of water does not fall below the seawater desalination cost of $0.60/m3. The urban and industrial water prices reduced significantly when wastewater is used for agriculture. Net benefits from treating and using wastewater far exceed the institutional change costs borne by the corresponding institutions. The work conducted by this dissertation clearly showed that new methods of integrated analysis using the concepts of water allocation, irrigation principles, economics, environmental concerns, and public health risk can be successfully conducted to improve existing agricultural water allocation and management practices in water deficit regions. Also such analyses will provide valuable information and insight leading to better management of valuable water resources that increase profitability in agricultural production while reducing stress on freshwater supplies through the use of alternative sources of water.
|
497 |
Optimization of Wastewater Microalgae Pretreatment for Acetone, Butanol, and Ethanol FermentationCastro, Yessica A. 01 May 2014 (has links)
Acetone-butanol-ethanol (ABE) fermentation from wastewater microalgae by Clostridium saccharoperbutylacetonicum N1-4 is a novel bioprocess that utilizes waste substrate to generate valuable solvents. Butanol, the most abundant product resulting from ABE fermentation, is an environmentally safe and high performing fuel that can be utilized as a drop-in-fuel; however, high operational costs and low ABE yield present challenge in scale-up of the process. The utilization of algae as a substrate requires pretreatment prior to fermentation to increase the bioavailability of the algal fermentable sugars and to improve the conditions of the pre-fermentation medium. The purpose of this thesis was to optimize wastewater microalgae pretreatment through (1) the optimization of microalgae saccharification, and (2) the use of cheese whey as co-substrate and supplement.
Optimal conditions for sugar liberation from wastewater algae through acid hydrolysis were determined for subsequent fermentation to acetone, butanol, and ethanol (ABE). Acid concentration, retention time, and temperature were evaluated to define optimal hydrolysis conditions by assessing sugar and ABE concentrations, and the associated costs. Additionally, the effect of cheese whey as a supplement and substrate was determined for acetone, butanol, and ethanol (ABE) fermentation from wastewater microalgae. Three media constituents, potassium phosphate, magnesium sulfate, and ferrous sulfate, were evaluated to assess their need as supplements in the medium to be inoculated, when 50 g/L of cheese whey was present. The optimization of wastewater microalgae pretreatment results in increasing ABE production and decreasing process costs.
|
498 |
The Impact of Wood Biochar on the Plant Uptake of Pharmaceuticals and Personal Care Products from Reclaimed WastewaterFlashinski, Jeffrey 01 May 2019 (has links)
Reclaimed water (treated water discharged from wastewater treatment plants (WWTPs)) is increasingly used in drier regions for irrigation purposes. This effectively increases the water supply and reduces the amount of WWTP discharge into surface waters but it creates the potential for contaminants in the reclaimed water, such as pharmaceuticals and personal care products (PPCPs), to accumulate in exposed crops. The US Environmental Protection Agency (US EPA) considers PPCPs contaminants of emerging concern due to their near universal presence in the environment and their potential for endocrine disruption. Biochar is gaining attention as a soil amendment and could potentially be used to sequester contaminants in the soil thereby reducing the contaminant uptake in crops.
The main objective of this study was to investigate the impact of wood biochar on the corn uptake of PPCPs originating from reclaimed water. Biochars derived from regional trees were chosen because they are rapidly expanding and represent a source of forest fire fuel (pinyon and juniper trees) or because they are frequently attacked by insects (lodgepole pine). The impact of biochar on contaminant uptake was tested by growing corn in non-amended soil and soil amended with biochar while being watered with reclaimed water supplemented with PPCPs (1 mg/L). Sand was also used for comparison since it is a less sorptive growth media. After a 28- day growing period, the corn leaves were dried, extracted, and analyzed for PPCPs.
|
499 |
Heavy Metal Contamination in Water and Sediment of To Lich River in Inner City Hanoi / ハノイ市内To Lich川の水中および底質中重金属汚染Nguyen Thi Thuong 24 September 2013 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第17881号 / 工博第3790号 / 新制||工||1580(附属図書館) / 30701 / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 米田 稔, 教授 田中 宏明, 教授 清水 芳久 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
500 |
Study on Effective Adsorption Conditions for Perfluorinated Compounds (PFCs) Removal in Municipal and Industrial Wastewaters in Thailand and Japan / タイ王国および日本における下水および産業廃水中のペルフルオロ化合物類の効率的吸着条件に関する研究Pattarawan Chularueangaksorn 24 September 2013 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(地球環境学) / 甲第17932号 / 地環博第111号 / 新制||地環||22(附属図書館) / 30752 / 京都大学大学院地球環境学舎環境マネジメント専攻 / (主査)教授 藤井 滋穂, 教授 伊藤 禎彦, 准教授 田中 周平 / 学位規則第4条第1項該当 / Doctor of Global Environmental Studies / Kyoto University / DFAM
|
Page generated in 0.0615 seconds