• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 934
  • 701
  • 118
  • 107
  • 95
  • 73
  • 25
  • 17
  • 16
  • 14
  • 12
  • 9
  • 9
  • 7
  • 6
  • Tagged with
  • 2517
  • 1211
  • 526
  • 416
  • 363
  • 342
  • 241
  • 228
  • 201
  • 200
  • 186
  • 167
  • 164
  • 162
  • 155
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

A N-E-W (nutrient-energy-water) synergy in a bioelectrochemical nitritation anammox process

Ghimire, Umesh 30 April 2021 (has links)
Partial nitritation combined with the anaerobic ammonium oxidation (Anammox) process offers a way of replacing the conventional nitrogen removal process of nitrification-denitrification, lowering the need for oxygen and chemical input, as well as reducing the production of sludge. However, as a by-product of the biochemical reaction driven by anammox bacteria, it produces nitrate-nitrogen (NO3- - N) (16-26% nitrogen removed), which is problematic. Microbial desalination cells (MDCs) are a promising technology capable of converting biodegradable organics into electricity (by electroactive bacteria), providing for simultaneous desalination, and wastewater treatment. Despite being a promising technology, MDCs have limitations. The first-proof of-concept of MDC was demonstrated using acetate as the organic source, expensive platinum as a catalyst, and ferricyanide as an electron acceptor in the cathode that makes MDC costly, environmentally unfriendly, and unsustainable. This research investigated the integration of the anammox and nitration processes in MDCs as a long-term biocatalyst/biocathode for sustainable and energy-efficient nitrogen removal and electricity generation. A series of experiments were designed and performed to evaluate the performance of the anammox process as a biocatalyst in MDCs. The results concluded that the anammox process can be used as a biocatalyst to accept electrons in MDCs producing 444 mW/m3 of power density and 84% of ammonium nitrogen removal. Furthermore, the concept of using a one-stage nitritation anammox process as a biocathode in MDC was evaluated and produced a maximum power output of 1007 mW/m3. Two configurations of anammox MDCs (anaerobic-anammox cathode MDC (AnAmmoxMDC) and nitritation-anammox cathode MDC (NiAmoxMDC) were compared with an air cathode MDC (CMDC), operated in fed-batch mode. The NiAmoxMDC showed better performance in terms of power production and nitrogen removal. The co-existence of aerobic ammonium oxidizing bacteria (AOB) and anammox bacteria in the same biocathode of single-stage NiAmoxMDC concluded the resource-efficient wastewater treatment. Furthermore, two-stage nitritation anammox as a biocathode in MDC was evaluated and proved to be energy-efficient bioelectrochemical wastewater treatment by producing 1500 mW/m3 (300 mW/m2) of maximum power output. This research provides the first proof of concept that nitritation-anammox biocathode can provide a sustainable and energy-efficient nitrogen removal along with desalination and bioelectricity generation.
532

Influence of Aluminum Ion on the Anaerobic Treatment of a Poultry Slaughterhouse Wastewater

Martinez, Julio Alberto 02 August 2003 (has links)
The influence of Al 3+ on the anaerobic treatment of a poultry slaughterhouse wastewater was studied in this work. The soluble COD (SCOD), volatile acid (VA) concentrations, and methane yield values were measured and compared for zero, 15, and 40 ppm Al 3+ runs. Methane yields of 55.4, 144.2, and 215.4 ml CH4/g. COD for zero, 15, and 40 ppm Al 3+ concentrations, respectively, were observed. Furthermore, SCOD and VAs were not detectable in the reactor that was seeded with 40 ppm Al 3+. It was concluded that inhibitory effects of long chain fatty acids (LCFAs) on aceticlastic methanogens were reduced by aluminum ion. This conclusion was also corroborated by a new mathematical model for estimating the Monod parameters developed in this work. The main characteristic of this new model is that estimated parameters must satisfy some restrictions, which provides consistency for the estimated parameters.
533

Microbiological Analysis of Residuals and Process Wastewater from Human and Animal Wastes: An Internship with the United States Environmental Protection Agency in Cincinnati, Ohio

Hayes, Gina L. 15 November 2006 (has links)
No description available.
534

Fate of Emerging Contaminants in Biomass Concentrating Reactors (BCR) under Conventional Aerobic and Aerobic/Anoxic Treatment

Platten, William E., III 10 October 2014 (has links)
No description available.
535

Waste stream reclamation for food manufacturing operations using membrane filtration

Nagappan, Subbiah, Nagappan 03 December 2018 (has links)
No description available.
536

EFFECT OF ACID AND BASE PRETREATMENT ON THE ANAEROBIC DIGESTION OF EXCESS MUNICIPAL SLUDGE

DE FRANCHI, GIOVANNI 27 September 2005 (has links)
No description available.
537

OCCURRENCE OF NONYLPHENOL POLYETHOXYLATES AND POLYCHLORO-BIPHENYLS IN AQUEOUS AND SOLID PHASES ALONG TWO PILOT-SCALE WASTEWATER TREATMENT PLANTS

GONZÁLEZ-FERNÁNDEZ, MARIA-CHRISTINA 27 September 2005 (has links)
No description available.
538

Evaluation of Enzyme-Linked Immunosorbent Assay (ELISA) Test Kits for the Quantitative Determination of Endocrine Disrupting Compounds (EDCs) in Aqueous Phase Environmental Samples

Kleiner, Eric J. 29 November 2010 (has links)
No description available.
539

Abiotic Transformation of Estrogens in Wastewater

Marfil Vega, Ruth January 2010 (has links)
No description available.
540

Evaluation of Current Drivers, Challenges and State of Art in Risk Treatment and Asset Management Planning for a Sewer District

Nirmalkumar, Deepika 20 September 2011 (has links)
No description available.

Page generated in 0.071 seconds