• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 28
  • 10
  • 9
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 135
  • 135
  • 21
  • 17
  • 17
  • 14
  • 14
  • 13
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Bend and orifice plate interactions and their influence on the pressure losses in internal flow systems

Salvarli, H. January 1980 (has links)
Experimental work has been carried out with a hydraulic flow test rig in which flows of water up to 65 kgs-l can be measured with a weigh-tank and its diverter valve to an accurary of ± 0.2%. The nature of the experimental work has been to investigate the system pressure losses due to the components in line (i) For interference free flow; (ii) For interactions. The components used are 90 degree circular bends and orifice plates. Bends of radius ratios from R/D - 1.49 to 4.89 and nominally standard single-hole and multi-hole orifice plates of area ratios from m – 0.170 to 0.508 have been tested. To investigate the interaction effects arising from an orifice plate in proximity to bends, various bend-orifice plate (in a few instances orifice plate-bend) combinations have been arranged. The bore diameter of duct (or pipe) and bend is approximately D – 145.05 mm and tests have been performed for Reynolds numbers ranging from Re(D) – 0.7 x 105 to 6 x 10(5). In those instances in which results from the experimental work can be compared directly with published results, agreement is good. However, many of the experimental results, particularly the measurements of interactions between bends and orifice plates, are new.
22

Como Medir el Flujo de Agua en los Canales de Riego a Cielo Abierto y en las Tuberias de Computeras (Spanish)

Martin, Edward 12 1900 (has links)
8 pp. / az1329: Measuring Water Flow in Surface Irrigation Ditches and Gated Pipe Martin, E.C. 2000. Determining the Amount of Water Applied to a Field. Cooperative Extension Pub. No. AZ1157, Arizona Water Series No. 29. University of Arizona, Tucson, AZ. Martin, E.C. 1999. Measuring Water Flow and Rate on the Farm. Cooperative Extension Pub. No. AZ1130, Arizona Water Series No. 24. University of Arizona, Tucson, AZ. / Measuring water is a critical part of any irrigation management system. This informational bulletin gives some simplistic methods of measuring flow rate in an open ditch and in gated pipe. Using the float method, dye tracers and velocity head meters, growers can get a quick estimate of the flow in their farm ditch. From this, an estimate of water applied or a set time can be determined. The bulletin also explains how a propeller meter works for gated pipe. Gated pipe is widely used through the state and in the West.
23

Studies on oil-water flow in inclined pipelines

Vedapuri, Damodaran January 1999 (has links)
No description available.
24

GIS based optimal design of sewer networks and pump stations

Agbenowosi, Newland Komla 11 June 2009 (has links)
In the planning and design of sewer networks, most of the decisions are spatially dependent because of the right of way considerations and the desire to have flow by gravity. This research addresses the application of combined optimization-geographic information system (GIS) technology in the design process. The program developed for the design uses selected manhole locations to generate the candidate potential sewer networks. The design area is delineated into subwatersheds for determining the locations for lift stations when gravity flow is not possible. Flows from upstream subwatersheds are transported to the downstream subwatersheds via a force main. The path and destination of each force main in the system is determined by applying the Dijkstra's shortest path algorithm to select the least cost path from a set of potential paths. This method seeks to minimize the total dynamic head. A modified length is used to represent the length of each link or force main segment. The modified length is the physical length of the link (representing the friction loss) plus an equivalent length (representing the static head). The least cost path for the force main is the path with the least total modified length. The design approach is applied to two areas in the town of Blacksburg, Virginia. The resulting network and the force main paths are discussed. / Master of Science
25

Energy efficiency through variable speed drive control on a cascading mine cooling system / Declan van Greunen

Van Greunen, Declan January 2014 (has links)
An ever-expanding global industry focuses attention on energy supply and use. Cost-effective electrical energy production and reduced consumption pave the way for this expansion. Eskom’s demand-side management (DSM) initiative provides the opportunity for reduced electricity consumption with cost-effective implementation for their respective clients. South African gold mines have to extend their operations to up to 4000 m below the surface to maintain profitable operations. Deep-level mining therefore requires large and energy-intensive cooling installations to provide safe working conditions. These installations generally consist of industrial chillers, cooling towers, bulk air coolers and water transport systems. All of these components operate in unison to provide chilled service water and cooled ventilation air underground. In this study the improved energy efficiency and control of a South African gold mine’s cooling plant is investigated. The plant is separated into a primary and secondary cooling load, resulting in a cascading cooling system. Necessary research was conducted to determine the optimal solution to improve the plant’s performance and electrical energy usage. Variable speed drives (VSD) were installed on the chiller evaporator and condenser water pumps to provide variable flow control of the water through the chillers, resulting in reduced motor electricity usage. Potential electricity savings were simulated. Proposed savings were estimated at 600 kW (13.6%) daily, with an expected saving of R 2 275 000 yearly, resulting in a payback period of less than 9 months. Results indicated are based on total savings, as VSD savings and control savings were combined. The VSDs that were installed, were controlled according to an optimum simulation model’s philosophy. A real-time energy management program was used to control the VSDs and monitor the respective systems. The program’s remote capabilities allow for off-site monitoring and control adjustments. A control strategy, which was implemented using the management program, is discussed. Energy efficiency was achieved through the respective installations and control improvements. The results were analysed over an assessment period of three months to determine the viability of the intervention. A newly installed Bulk Air Cooler (BAC) added to the service delivery of the cooling plant post installation of the VSDs. Focusing on service delivery to underground showed a savings of 1.7 MW (33.6%) daily and a payback period of 3.6 months (0.3 years). The overall implementation showed an average energy saving of 2.3 MW (47.1%) daily, with the result that a daily saving of R 23 988.20 was experienced, reducing the payback period to 2.3 months (0.2 years). Through the installation of energy-efficiency technology and a suitable control philosophy, a cost-effective, energy-efficiency improvement was created on the case-study cooling plant. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
26

Energy efficiency through variable speed drive control on a cascading mine cooling system / Declan van Greunen

Van Greunen, Declan January 2014 (has links)
An ever-expanding global industry focuses attention on energy supply and use. Cost-effective electrical energy production and reduced consumption pave the way for this expansion. Eskom’s demand-side management (DSM) initiative provides the opportunity for reduced electricity consumption with cost-effective implementation for their respective clients. South African gold mines have to extend their operations to up to 4000 m below the surface to maintain profitable operations. Deep-level mining therefore requires large and energy-intensive cooling installations to provide safe working conditions. These installations generally consist of industrial chillers, cooling towers, bulk air coolers and water transport systems. All of these components operate in unison to provide chilled service water and cooled ventilation air underground. In this study the improved energy efficiency and control of a South African gold mine’s cooling plant is investigated. The plant is separated into a primary and secondary cooling load, resulting in a cascading cooling system. Necessary research was conducted to determine the optimal solution to improve the plant’s performance and electrical energy usage. Variable speed drives (VSD) were installed on the chiller evaporator and condenser water pumps to provide variable flow control of the water through the chillers, resulting in reduced motor electricity usage. Potential electricity savings were simulated. Proposed savings were estimated at 600 kW (13.6%) daily, with an expected saving of R 2 275 000 yearly, resulting in a payback period of less than 9 months. Results indicated are based on total savings, as VSD savings and control savings were combined. The VSDs that were installed, were controlled according to an optimum simulation model’s philosophy. A real-time energy management program was used to control the VSDs and monitor the respective systems. The program’s remote capabilities allow for off-site monitoring and control adjustments. A control strategy, which was implemented using the management program, is discussed. Energy efficiency was achieved through the respective installations and control improvements. The results were analysed over an assessment period of three months to determine the viability of the intervention. A newly installed Bulk Air Cooler (BAC) added to the service delivery of the cooling plant post installation of the VSDs. Focusing on service delivery to underground showed a savings of 1.7 MW (33.6%) daily and a payback period of 3.6 months (0.3 years). The overall implementation showed an average energy saving of 2.3 MW (47.1%) daily, with the result that a daily saving of R 23 988.20 was experienced, reducing the payback period to 2.3 months (0.2 years). Through the installation of energy-efficiency technology and a suitable control philosophy, a cost-effective, energy-efficiency improvement was created on the case-study cooling plant. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
27

Estabilidade linear para intermitência severa em sistemas água-ar. / Linear stability for severe slugging in air-water systems.

Azevedo, Gabriel Romualdo de 15 December 2017 (has links)
Apresenta-se um modelo matemático que avalia numericamente a estabilidade do estado estacionário para escoamentos água-ar em sistemas pipeline-riser de geometria variável. Uma análise a partir da teoria de estabilidade linear é aplicada a um modelo matemático adequado ao escoamento água-ar no sistema pipeline-riser. O modelo considera equações de continuidade para a fase líquida e para a fase gasosa, admite-se escoamento unidimensional e em condição isotérmica. O líquido é considerado incompressível enquanto que a fase gasosa é considerada um gás ideal. Admite-se uma equação de momento simplificada para mistura onde despreza-se a inércia (NPW - Modelo No Pressure Wave) e o padrão de escoamento local é definido com base nas condições do escoamento e na inclinação local. Assim, a intermitência severa é controlada principalmente pela gravidade no riser e pela compressibilidade do gás no pipeline. Tanto a correlação de fluxo de deriva quanto o cálculo da queda de pressão por atrito, adotados como lei de fechamento do modelo, são determinados em função do padrão de escoamento. Injeção de gás e válvula de choke são consideradas, respectivamente, na base e no topo do riser. O modelo é aplicado à sistemas pipeline-riser com escoamento água-ar citados na literatura. Os resultados da análise de estabilidade linear numérica são comparados aos resultados experimentais e numéricos apresentando uma excelente concordância. / A mathematical model that numerically evaluates the stability of the stationary state for hilly terrain air-water flows systems is presented. Numerical linear stability analysis is performed to a suitable mathematical model for the two-phase flows in a pipeline-riser system. The mathematical model considers the continuity equations for the liquid and gas phases, one-dimensional flow and isothermal conditions. The liquid is assumed incompressible while the gas phase is considered as an ideal gas. A simplified momentum equation for the mixture, neglecting inertia (NPW - No pressure wave model) is considered and the local flow pattern is defined based on the flow conditions and the local inclination. In this way, severe slugging is controlled mainly by gravity in the riser and compressibility in the pipeline. The void fraction and friction pressure drop, utilized as closure laws, are determined based on the local flow pattern. Gas injection at the bottom of the riser and a choke valve at the top are considered. The model is applied to air-water pipeline-riser systems reported in the literature. Numerical linear stability analysis results are compared with experimental and numerical results reported in the literature with excellent agreement.
28

Apport de l'équation de Brinkman à la modélisation de l'écoulement d'eau et du transport de soluté dans l'aquifère karstique : application au système karstique du Val d'Orléans / Contribution of the Brinkman equation to simulate the water flow and solute transport within the karst aquifer : application to the karst system of the Val d'Orléans

Joodi, Ali Salim 31 August 2009 (has links)
Les aquifères karstiques sont caractérisés par un écoulement rapide dans les conduits karstiques et un écoulement lent dans la roche encaissante (matrice). En raison de cet écoulement rapide, ces aquifères sont fortement vulnérables à la pollution. L'objectif principal de cette thèse est d’évaluer l'importance des échanges d'eau à l'interface entre les conduits et la matrice et par conséquent l’impact de ces échanges sur le transport de soluté dans le système karstique. Pour investiguer l’apport de l'équation de Brinkman à l’évaluation des écoulements d'eau, un modèle dont la géométrie du conduit est décrite par la fonction sinus a été établi. Deux scénarii sont appliqués. Le scénario A emploie la loi de Darcy dans le conduit et la matrice. Le scénario B emploie l'équation de Brinkman et la loi de Darcy dans le conduit et la matrice, respectivement. Le terme supplémentaire de l’équation de Brinkman décrivant les forces de cisaillement joue un rôle prédominant sur l'échange d’eau entre le conduit et la matrice lorsque les conduits sont sinueux. Le modèle hydrodynamique - transport a été appliqué au système karstique du Val d’Orléans. La calibration a démontré que le meilleur diamètre moyen du conduit est de 5 m, la perméabilité dans la roche encaissante est de 5,7×10-10 m2 et celle du conduit de 1,65×10-5 m2 à 5,5×10-5 m2. Les prédictions du modèle hydrodynamique - transport ont été comparées aux crues de la Loire observées dans les années 1992 et 1993 durant lesquelles les concentrations en chlorure (traceur naturel conservatif) ont été dosées dans la Loire et à la source du Bouillon. Avec un coefficient d’emmagasinement dans la matrice de 0,9 m-1, la distance pénétrée par l'eau de la crue dans la matrice est d'environ 530 m en deux mois pour une crue de 2 m (exemple de 1993). / The karst aquifers are characterized by a fast flow in the karstic conduits and a slow flow in the matrix. Because of this fast flow, these aquifers are strongly vulnerable to pollution. The main aim of this thesis is to evaluate the importance of water exchanges at the interface between the conduits and the matrix and by consequence the impact of these exchanges on the solute transport in the karst system. To investigate the contribution of the Brinkman equation to the evaluation of the water flows, a model whose geometry of the conduit is described by the sine function was established. Two scenarii are applied. Scenario A employs Darcy’s law in the conduit and the matrix. The scenario B employs the Brinkman equation and Darcy’s law in the conduit and the matrix, respectively. The additional term of the Brinkman equation describing the shear stress plays a predominant role on the water exchange between the conduit and the matrix when the conduits are sinuous. The hydrodynamic - transport model was applied to the karst system of the Val d’Orléans. The calibration showed that the best average diameter of the conduit is of 5 m, the permeability in the hosted rock is of 5.7×10-10 m2 and that of the conduit of 1.65×10-5 m2 to 5.5×10-5 m2. The results of the hydrodynamic - transport model were compared to floods of the Loire observed in the years 1992 and 1993 during which the chloride concentrations (tracer conservative naturalness) were proportioned in the Loire and Bouillon Spring. With a storage coefficient in the matrix 0.9 m-1, the distance penetrated by the water in the matrix is approximately 530 m in two months for a rising of 2 meters (example of 1993).
29

Nutrient Uptake by Seagrass Communities and Associated Organisms: Impact of Hydrodynamic Regime Quantified through Field Measurements and use of an Isotope Label

Cornelisen, Christopher David 28 February 2003 (has links)
Seagrass communities are composed of numerous organisms that depend on water-column nutrients for metabolic processes. The rate at which these organisms remove a nutrient from the water column can be controlled by physical factors such as hydrodynamic regime or by biological factors such as speed of enzyme reactions. The impact of hydrodynamic regime on rates of nutrient uptake for seagrass (Thalassia testudinum) communities and for organisms that comprise the community (seagrass, epiphytes, phytoplankton, and microphytobenthos) was quantified in a series of field flume experiments employing the use of 15N-labeled ammonium and nitrate. Rates of ammonium uptake for the entire community and for seagrass leaves and epiphytes were significantly dependent on bulk velocity, bottom shear stress, and the rate of turbulent energy dissipation. Relationships between uptake rates and these parameters were consistent with mass-transfer theory and suggest that the effect of water flow on ammonium uptake is the same for the benthos as a whole and for the organisms that form the canopy. In addition, epiphytes on the surface of T. testudinum leaves were shown to depress leaf uptake by an amount proportional to the area of the leaf covered by epiphytes. Water flow influenced rates of nitrate uptake for the community and the epiphytes; however, uptake rates were depressed relative to those for ammonium suggesting that uptake of nitrate was also affected by biological factors such as enzyme activity. Epiphytes reduced uptake of nitrate by the leaves; however, the amount of reduction was not proportional to the extent of epiphyte cover, which provided further evidence that nitrate uptake by T. testudinum leaves was biologically limited. As an additional component of the research, hydrodynamic regime of a mixed seagrass and coral community in Florida Bay was characterized using an acoustic Doppler velocimeter. Hydrodynamic parameters estimated from velocity data were used in mass-transfer equations to predict nutrient uptake by the benthos over a range of water velocity. Measured rates of uptake from field flume experiments conducted in the same community confirmed that hydrodynamic data could be used to accurately predict nutrient transport to the benthos under natural flow conditions.
30

Nutrient Distribution Effects from Freshwater Discharge at Franklin Lock and Dam (S-79) in 2005 and 2006 on the Caloosahatchee Estuary and San Carlos Bay, Fort Myers, Florida

Uhlenbrock, Kristan M 01 April 2009 (has links)
Nutrient distribution correlates with discharge of freshwater from Franklin Lock and Dam structure (S-79) by delivery into the Caloosahatchee Estuary (CE) and out of this area, including the surrounding San Carlos Bay (SCB) and adjacent West Florida Shelf. This study analyzed the temporal and spatial distribution of nutrients along the CE waterway and illustrates the effects high freshwater discharge from S-79 has on the coastal and offshore environments, providing a potential source of nutrient input. This study consisted of a 7-station transect monitored biweekly from April 2005 thru August 2006 for nutrients, dissolved oxygen, chlorophyll a, and salinity, along with the corresponding freshwater discharge from S-79. High flow rates correlated (r²=0.7488) with decreased salinity downstream from S-79. At high discharge, over 140 m³ s-¹, nutrients were noticeably transported downstream to SCB; during extreme high flow rates of 285 m³ s-¹, it takes a little less than 4 days for a particle of water to travel from S-79 to the mouth of the estuary. There is evidence from the SATlantic ISUS deployment that pulses of water from S-79 correlated with downstream increased concentrations of nitrate on a daily temporal scale. The assumption that upstream estuarine waters are potentially carrying nutrients downstream can only be conjectured for high flow rates. Low flow rates (less than approximately 28 m³ s-¹) corresponded to hypoxia during the summer months of 2006. The highest chlorophyll a concentrations were found either during decreased flow rates or summer months. Chl a (>3.0 µm) in SCB and the mouth of the CE was above 4 µg l-¹ in July through October 2005 and ranged from 1.24 to 9.62 µg l-¹ in June through August 2006. Karenia brevis blooms were also present during this time. Nutrient loading rates into SCB provided enough DIN and DON to support the maintenance of K. brevis. Therefore monitoring and studying the amount of nutrient loading into coastal and offshore water can elucidate their importance on the surrounding ecology.

Page generated in 0.2922 seconds