• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Posouzení obsahu a kvality humusu u rozdílných technologií zpracování půdy / Evaluation of humus content and quality in different tillage systems

SVOBODOVÁ, Olga January 2011 (has links)
Quantitative and qualitative Soil Organic Matter (SOM) properties were observed in the soil samples of a medium-term field experiment (Cambisol ? Studena, Czech Republic) and an exact field experi?ment (Chernozem ? Gross Enzersdorf, Austria) in the year 2005 considering different soil tillage systems (conventional and minimum tillage). Except the standard parameters, soil organic matter content and quality in particulate water stable aggregates size fractions was additional determinated for Cambisol. Cambisol showed more favourable values of both quantitative and qualitative SOM parameters in minimum tillage system compared to those in conventional tillage system. SOM quality in the water stable aggregates fractions was better in minimum tillage compared to conventional tillage. Cambisol also showed that SOM in aggregates fractions is much more quality compared to SOM in the original soil samples. Chernozem showed higher values of both quantitative and qualitative SOM parameters in conventional tillage compared to those in minimum tillage but the differences are not high. It can be said that Chernozem organic matter reaction to tillage technology changes is slower and of minor rate in comparison with that of Cambisol organic matter. The results of quantitative and qualitative parameters do not conform to the generally recognised values for the Chernozem soil type.
2

Evaluation of soil erosion in the Harerge region of Ethiopia using soil loss models, rainfall simulation and field trials

Bobe, Bedadi Woreka 02 August 2004 (has links)
Accelerated soil erosion is one of the major threats to agricultural production in Ethiopia and the Harerge region is not exceptional. It is estimated that about 1.5 billion tones of soil is being eroded every year in Ethiopia. In the extreme cases, especially for the highlands, the rate of soil loss is estimated to reach up to 300 t ha-1yr-1 with an average of about 70 t ha -1yr-1 which is beyond any tolerable level. The government have made different attempts to avert the situation since 1975 through initiation of a massive program of soil conservation and rehabilitation of severely degraded lands. Despite considerable efforts, the achievements were far bellow expectations. This study was aimed at assessing the effect of some soil properties, rainfall intensity and slope gradients on surface sealing, soil erodibility, runoff and soil loss from selected sites in the Harerge region, eastern Ethiopia, using simulated rainfall. Soil loss was also estimated for the sites using Soil Loss Estimation Model for Southern Africa (SLEMSA) and the Universal soil Loss Equation (USLE). Moreover, the effectiveness of various rates and patterns of wheat residue mulching in controlling soil loss was also evaluated for one of the study sites, (i.e. Regosol of Alemaya University), under both rainfall simulation and field natural rainfall conditions. For most of the erosion parameters, the interaction among soil texture, slope gradient and rainfall intensity was significant. In general however, high rainfall intensity induced high runoff, sediment yield and splash. The effect of slope gradients on most of the erosion parameters was not significant as the slope length was too small to bring about a concentrated flow. The effect of soils dominated by any one of the three soil separates on the erosion parameters was largely dependent on rainfall intensity and slope gradient. The soils form the 15 different sites in Harerge showed different degrees of vulnerability to surface sealing, runoff and sediment yield. These differences were associated with various soil properties. Correlation of soil properties to the erosion parameters revealed that aggregate stability was the main factor that determined the susceptibility of soils to sealing, runoff and soil loss. This was in turn affected by organic carbon content, percent clay and exchangeable sodium percentage (ESP). Soils with relatively high ESP such as those at Babile (13.85) and Gelemso (7.18) were among the lowest in their aggregate stability (percent water stable aggregates of 0.25 –2.0mm diameter); and have highest runoff and sediment yield as compared to other soils in the study. Similarly, most of those soils with relatively low ESP, high organic carbon content (OC%) and high water stable aggregates such as Hamaressa, AU (Alemaya University) vertisol and AU regosol were among the least susceptible to sealing and interrill erosion. Nevertheless, some exceptions include soils like those of Hirna where high runoff was recorded whilst having relatively high OC%, low ESP and high water stable aggregates. Both the SLEMSA and USLE models were able to identify the erosion hazards for the study sites. Despite the differences in the procedures of the two models, significant correlation (r = 0.87) was observed between the values estimated by the two methods. Both models estimated higher soil loss for Gelemso, Babile, Karamara and Hamaressa. Soil loss was lower for Diredawa, AU-vertisol and AU-Alluvial all of which occur on a relatively low slope gradients. The high soil loss for Babile and Gelemso conforms with the relative soil erodibility values obtained under rainfall simulation suggesting that soil erodibility, among others, is the main factor contributing to high soil loss for these soils. The difference in the estimated soil losses for the different sites was a function of the interaction of the various factors involved. Though the laboratory soil erodibility values were low to medium for Hamaressa and Karamara, the estimated soil loss was higher owing to the field topographic situations such as high slope gradient. SLEMSA and USLE showed different degrees of sensitivities to their input variables for the conditions of the study sites. SLEMSA was highly sensitive to changes in rainfall kinetic energy (E) and soil erodibility (F) and less sensitive to the cover and slope length factors. The sensitivity of SLEMSA to changes in the cover factor was higher for areas having initially smaller percentage rainfall interception values. On the other hand, USLE was highly sensitive to slope gradient and less so to slope length as compared to the other input factors. The study on the various rates and application patterns of wheat residue on runoff and soil loss both in the laboratory rainfall simulation and under field natural rainfall conditions revealed that surface application of crop residue is more effective in reducing soil loss and runoff than incorporating the same amount of the residue into the soil. Likewise, for a particular residue application method, runoff and soil loss decreased with increasing application rate of the mulch. However, the difference was not significant between 4 Mg ha-1 and 8 Mg ha-1 wheat straw rates suggesting that the former can effectively control soil loss and can be used in areas where there is limitation of crop residues provided that other conditions are similar to that of the study site (AU Regosols). The effectiveness of lower rates of straw (i.e. less than 4 Mg ha-1 ) should also be studied. It should however be noted that the effectiveness of mulching in controlling soils loss and runoff could be different under various slope gradients, rainfall characteristics and cover types that were not covered in this study. Integrated soil and water conservation research is required to develop a comprehensive database for modelling various soil erosion parameters. Further research is therefore required on the effect of soil properties (with special emphasis to aggregate stability, clay mineralogy, exchangeable cations, soil texture and organic matter), types and rates of crop residues, cropping and tillage systems, mechanical and biological soil conservation measures on soil erosion and its conservation for a better estimation of the actual soil loss in the study sites. Copyright 2004, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. Please cite as follows: Bobe, BW 2004, Evaluation of soil erosion in the Harerge region of Ethiopia using soil loss models, rainfall simulation and field trials, PhD thesis, University of Pretoria, Pretoria, viewed yymmdd < http://upetd.up.ac.za/thesis/available/etd-08022004-141533 / > / Thesis (PhD (Soil Science))--University of Pretoria, 2004. / Plant Production and Soil Science / unrestricted
3

Verbleib des organischen Kohlenstoffs in Bodenfraktionen nach Landnutzungswechsel in den humiden Tropen / Fate of Organic Carbon in Soil Fractions Following Land Use Conversion in the Humid Tropics

Paul, Sonja Marit 18 July 2007 (has links)
No description available.

Page generated in 0.0847 seconds