• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 9
  • 9
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Guelph Flood Forecasting Model (GFLOOD): An Innovative Modelling Approach for Estimating Flows and Water Levels in Streams

Perdikaris, John 09 May 2013 (has links)
The analysis of large-scale watershed processes and development of an efficient and integrated modelling platform is the focus of this research. The research focused on developing a series of modelling tools that can be used in the simulation of the overall response of a watershed based on a localized or distributed hydrologic event. This is achieved through the introduction of a hybrid modelling concept using a combination of empirically based lumped hydrologic processes and a physics-based distributed model representation. The watershed simulation model (GFLOOD) was developed to account for the complexity of the watershed including the variations in climate, soils, topography, and landuse conditions across the watershed. GFLOOD stands for Guelph Flood Forecasting Model, a river basin or watershed scale flow prediction model. Two major modelling components of the GFLOOD model are the time parameters (time of concentration (Tc) and recession constant (K)) and the channel routing component. Each of these modelling components is evaluated separately. The equations developed in this study for estimating the time parameters can be used as an initial estimate for Tc and K for ungauged basins, and through calibration and/or sensitivity analysis the values of Tc and K can be finalized. The Saint Venant equations for flood routing are solved by transforming the momentum equation into a partial differential equation which has six parameters related to cross-sectional area and discharge of the channel, left floodplain and right floodplain. The simplified dynamic model was further modified to account for transmission losses, evaporation losses and bank storage within the channel. The model was compared with the solutions of the general dynamic wave model, diffusion wave model and the more complex dynamic wave model. The comparison shows that there is good agreement between the results of the simplified dynamic model and the other models however, the simplified dynamic model is easier to formulate and compute than the other models. The complete GFLOOD model was applied to the Welland River Watershed within Southern Ontario. The model was evaluated for its ability to predict streamflow and water levels along the main branch of the Welland River.
2

AGRICULTURAL BEST MANAGEMENT PRACTICES AND THEIR EFFECTS ON SEDIMENT TRANSPORT CURVES FOR IMPROVED WATERSHED HEALTH

Stang, Conrad 23 January 2012 (has links)
Eutrophic conditions caused Severn Sound to be listed as an Area of Concern in the 1980’s, it was then delisted in 2002 after implementing a number of agricultural Best Management Practices (BMPs). The focus of this research is to evaluate BMP effectiveness on a watershed scale using both monitoring and modelling. The monitoring data clearly shows that the BMPs significantly reduced the sediment loadings. It also showed that BMPs affect only the intercept and not the slope of the sediment rating curves meaning that BMPs reduce sediment loadings in a linear fashion and at a constant percentage for all sizes of storms. The literature review and associated BMP reduction factors used to model the applied BMPs clearly show that observed and predicted reductions in sediment were experienced and that the model is validated for use on a watershed scale for BMP implementation. The results from this research will further the understanding of how sediment transport curves are affected by Best Management Practices. / Chapter 1 defines the problem and scope of the research study to be examined in this thesis. The literature review presents the current state of knowledge related to the effectiveness of BMPs, sampling techniques, and the use of sediment transport curves, and watershed modelling as a tool to evaluate the use of BMPs. Chapter 3 explains the goals and objectives as well as the study area for this research. Outlined in Chapter 4 are the standard methods used for water quality monitoring and setting-up and calibrating a watershed model. Research results are presented in Chapter 5 and include measured streamflow and water quality results for the respective rivers along with results from watershed modelling. The results section also reflects on the implications for BMP effectiveness and areas of future research. Chapter 6 concludes with a summary of the new information gained from this research and the success of Severn Sound in leading the way in improved use of BMPs for a healthier watershed. / Severn Sound Environmental Association, Greenland International Consulting Ltd., University of Guelph School of Engineering
3

An Evaluation of Approaches to Derive Effluent Requirements for Wastewater Treatment Plants in Ontario

Simmons, Elizabeth Jane 21 May 2013 (has links)
The objectives of this project are to rate three approaches for deriving effluent requirements; create a prioritized list of improvement steps; apply a watershed-level model to determine treatment plant requirements; and provide recommendations for deriving effluent requirements in Ontario. Results of a two-part stakeholder survey show that until advancements are made, compromise is necessary when selecting an approach for deriving effluent requirements, as no one approach meets all the evaluation criteria. However, the necessary steps toward improvement are relatively clear and require multi-disciplinary input. When the watershed-level modelling approach was applied, it was found that although there are challenges that must be addressed, overall, it appears advantageous to use a tool such as watershed-level models for the purpose of deriving effluent requirements in Ontario. / Natural Sciences and Engineering Research Council of Canada, Ontario Graduate Scholarship Program
4

Microbial Contamination Assessment with SWAT in a Tile-Drained Rural Watershed

Fall, Claudia 10 June 2011 (has links)
Microbial contamination of drinking water poses an important health risk which causes severe illnesses and epidemics. In order to improve surface and drinking water quality, the understanding of fecal pathogen contamination processes including their prevention and control needs to be enhanced. The watershed model soil water assessment tool (SWAT) is commonly used to simulate the complex hydrological, meteorological, erosion, land management and pollution processes within river basins. In recent years, it has been increasingly applied to simulate microbial contamination transport at the watershed scale. SWAT is used in this study to simulate Escherichia coli (E.coli) and fecal coliform densities for the agriculturally dominated Payne River Basin in Ontario, Canada. Unprecedented extensive monitoring data that consist of 30 years of daily hydrological data and 5 years of bi-weekly nutrient data have been used to calibrate and validate the presented model here. The calibration and validation of the streamflow and nutrients indicate that the model represent these processes well. The model performs well for periods of lower E. coli and fecal coliform loadings. On the other hand, frequency and magnitude of higher microbial loads are not always accurately represented by the model.
5

Microbial Contamination Assessment with SWAT in a Tile-Drained Rural Watershed

Fall, Claudia 10 June 2011 (has links)
Microbial contamination of drinking water poses an important health risk which causes severe illnesses and epidemics. In order to improve surface and drinking water quality, the understanding of fecal pathogen contamination processes including their prevention and control needs to be enhanced. The watershed model soil water assessment tool (SWAT) is commonly used to simulate the complex hydrological, meteorological, erosion, land management and pollution processes within river basins. In recent years, it has been increasingly applied to simulate microbial contamination transport at the watershed scale. SWAT is used in this study to simulate Escherichia coli (E.coli) and fecal coliform densities for the agriculturally dominated Payne River Basin in Ontario, Canada. Unprecedented extensive monitoring data that consist of 30 years of daily hydrological data and 5 years of bi-weekly nutrient data have been used to calibrate and validate the presented model here. The calibration and validation of the streamflow and nutrients indicate that the model represent these processes well. The model performs well for periods of lower E. coli and fecal coliform loadings. On the other hand, frequency and magnitude of higher microbial loads are not always accurately represented by the model.
6

Microbial Contamination Assessment with SWAT in a Tile-Drained Rural Watershed

Fall, Claudia 10 June 2011 (has links)
Microbial contamination of drinking water poses an important health risk which causes severe illnesses and epidemics. In order to improve surface and drinking water quality, the understanding of fecal pathogen contamination processes including their prevention and control needs to be enhanced. The watershed model soil water assessment tool (SWAT) is commonly used to simulate the complex hydrological, meteorological, erosion, land management and pollution processes within river basins. In recent years, it has been increasingly applied to simulate microbial contamination transport at the watershed scale. SWAT is used in this study to simulate Escherichia coli (E.coli) and fecal coliform densities for the agriculturally dominated Payne River Basin in Ontario, Canada. Unprecedented extensive monitoring data that consist of 30 years of daily hydrological data and 5 years of bi-weekly nutrient data have been used to calibrate and validate the presented model here. The calibration and validation of the streamflow and nutrients indicate that the model represent these processes well. The model performs well for periods of lower E. coli and fecal coliform loadings. On the other hand, frequency and magnitude of higher microbial loads are not always accurately represented by the model.
7

Microbial Contamination Assessment with SWAT in a Tile-Drained Rural Watershed

Fall, Claudia January 2011 (has links)
Microbial contamination of drinking water poses an important health risk which causes severe illnesses and epidemics. In order to improve surface and drinking water quality, the understanding of fecal pathogen contamination processes including their prevention and control needs to be enhanced. The watershed model soil water assessment tool (SWAT) is commonly used to simulate the complex hydrological, meteorological, erosion, land management and pollution processes within river basins. In recent years, it has been increasingly applied to simulate microbial contamination transport at the watershed scale. SWAT is used in this study to simulate Escherichia coli (E.coli) and fecal coliform densities for the agriculturally dominated Payne River Basin in Ontario, Canada. Unprecedented extensive monitoring data that consist of 30 years of daily hydrological data and 5 years of bi-weekly nutrient data have been used to calibrate and validate the presented model here. The calibration and validation of the streamflow and nutrients indicate that the model represent these processes well. The model performs well for periods of lower E. coli and fecal coliform loadings. On the other hand, frequency and magnitude of higher microbial loads are not always accurately represented by the model.
8

Hydrological and sediment Yield modelling in Lake Tana Basin, Blue Nile Ethiopia

Setegn, Shimelis Gebriye January 2008 (has links)
<p>Land and water resources degradation are the major problems on the Ethiopian highlands. Poor land use practices and improper management systems have played a significant role in causing high soil erosion rates, sediment transport and loss of agricultural nutrients. So far limited meas-ures have been taken to combat the problems. In this study a physically based watershed model, SWAT2005 was applied to the Northern Highlands of Ethiopia for modelling of the hydrology and sediment yield. The main objective of this study was to test the performance and feasibility of SWAT2005 model to examine the influence of topography, land use, soil and climatic condi-tion on streamflows, soil erosion and sediment yield. The model was calibrated and validated on four tributaries of Lake Tana as well as Anjeni watershed using SUFI-2, GLUE and ParaSol algo-rithms. SWAT and GIS based decision support system (MCE analysis) were also used to identify the most erosion prone areas in the Lake Tana Basin. Streamflows are more sensitive to the hy-drological response unites definition thresholds than subbasin discretization. Prediction of sedi-ment yield is highly sensitive to subbasin size and slope discretization. Baseflow is an important component of the total discharge within the study area that contributes more than the surface runoff. There is a good agreement between the measured and simulated flows and sediment yields with higher values of coefficients of determination and Nash Sutcliffe efficiency. The an-nual average measured sediment yield in Anjeni watershed was 24.6 tonnes/ha. The annual aver-age simulated sediment yield was 27.8 and 29.5 tonnes/ha for calibration and validation periods, respectively. The SWAT model indicated that 18.5 % of the Lake Tana Basin is erosion potential areas. Whereas the MCE result indicated that 25.5 % of the basin are erosion potential areas. The calibrated model can be used for further analysis of the effect of climate and land use change as well as other different management scenarios on streamflows and soil erosion. The result of the study could help different stakeholders to plan and implement appropriate soil and water conser-vation strategies.</p>
9

Hydrological and sediment yield modelling in Lake Tana Basin, Blue Nile Ethiopia

Setegn, Shimelis Gebriye January 2008 (has links)
Land and water resources degradation are the major problems on the Ethiopian highlands. Poor land use practices and improper management systems have played a significant role in causing high soil erosion rates, sediment transport and loss of agricultural nutrients. So far limited meas-ures have been taken to combat the problems. In this study a physically based watershed model, SWAT2005 was applied to the Northern Highlands of Ethiopia for modelling of the hydrology and sediment yield. The main objective of this study was to test the performance and feasibility of SWAT2005 model to examine the influence of topography, land use, soil and climatic condi-tion on streamflows, soil erosion and sediment yield. The model was calibrated and validated on four tributaries of Lake Tana as well as Anjeni watershed using SUFI-2, GLUE and ParaSol algo-rithms. SWAT and GIS based decision support system (MCE analysis) were also used to identify the most erosion prone areas in the Lake Tana Basin. Streamflows are more sensitive to the hy-drological response unites definition thresholds than subbasin discretization. Prediction of sedi-ment yield is highly sensitive to subbasin size and slope discretization. Baseflow is an important component of the total discharge within the study area that contributes more than the surface runoff. There is a good agreement between the measured and simulated flows and sediment yields with higher values of coefficients of determination and Nash Sutcliffe efficiency. The an-nual average measured sediment yield in Anjeni watershed was 24.6 tonnes/ha. The annual aver-age simulated sediment yield was 27.8 and 29.5 tonnes/ha for calibration and validation periods, respectively. The SWAT model indicated that 18.5 % of the Lake Tana Basin is erosion potential areas. Whereas the MCE result indicated that 25.5 % of the basin are erosion potential areas. The calibrated model can be used for further analysis of the effect of climate and land use change as well as other different management scenarios on streamflows and soil erosion. The result of the study could help different stakeholders to plan and implement appropriate soil and water conser-vation strategies. / QC 20101123

Page generated in 0.123 seconds