Spelling suggestions: "subject:"make ana"" "subject:"make cana""
1 |
Accumulation of poly- and perfluoroalkylated substances (PFASs) and mercury in fish tissue from Lake Tana, Ethiopia : Evaluation of human exposure due to increased fish consumptionSjöholm, Margareta January 2015 (has links)
Both poly- and perfluoroalkylated substances (PFASs) and mercury (Hg) are persistent bioaccumulative, and toxic substances (PBTs) of great concern due to their health effects on humans. These pollutants are ubiquitously occurring in the global aquatic environment and dietary intake of fish is the major exposure pathway for humans. PFASs and Hg are widely studied in the temperate zones, but little is known from the tropical aquatic systems in Africa. Lake Tana, Ethiopia, is of high ecological value and predicted to increase its fish production and export during following years, but knowledge of human health effects due to bioaccumulated pollutants loading from this lake is lacking. The objective of this study was therefore to compare Hg and PFAS concentrations between sites and species, evaluate accumulation patterns and assess the human health risk with increased fish consumption. During October 2014, a total of 97 fish specimens from five species (Labeobarbus megastoma, Labeobarbus gorguari, Labeobarbus intermedius, Oreochromis niloticus and Clarias gariepinus) were collected from seven sites in Lake Tana. The fish was dissected in Bahir Dar, where a muscle sample was taken from the dorsal line, and later analyzed at the Swedish University of Agricultural Sciences. To determine differences and correlations between sites and species as well as for Hg and PFASs, statistical analyses were conducted and to determine the health risks in increased fish consumption a hazard ratio (HR) was calculated for both substances. The results showed several similarities between Hg and PFASs, including higher concentrations in piscivorous fish species (L. megastoma and L. gorguari) than non-piscivorous and also spatial distribution similarities. Hg concentrations ranged from 0-639 ng g-1 wet weight (ww) with an overall mean of 137 ng g-1 ww for all species. Seven PFASs were detected (PFNA, PFDA, PFUnDA, PFDoDA, PFTeDA, PFBS, PFOS), and the ∑PFSA concentrations ranged from non-detected to 3.61 ng g-1 ww. PFDA was found in all sites and species, compared to PFOS, which only was found in piscivorous species in elevated levels. The positive correlation between Hg and PFOS imply that these substances have similar accumulation patterns. The HRs showed that increased fish consumption is harmless to the Ethiopian population regarding PFAS and Hg contamination. Varied fish consumption is of importance though since several individuals from the piscivorous species contained Hg concentrations exceeding the WHO marketing limit of 0.5 μg g-1 (500 ng g-1). / Både poly- och perfluoralkylerade ämnen (PFASer) och kvicksilver (Hg) är persistenta, bioackumulerande och toxiska (PBT) ämnen som kan utgöra stor hälsorisk för människor. PFASer och Hg förekommer globalt i den akvatiska miljön och den mest betydande källan för mänsklig exponering av dessa ämnen är fiskkonsumtion. Studier av PFASer och Hg är vanligt förekommande i de tempererade zonerna, men väldigt lite är känt från de tropiska akvatiska systemen i Afrika. Lake Tana, Etiopiens största sjö, har stort ekologiskt värde och fiskproduktion och export från sjön förutspås öka under kommande år. Däremot saknas kunskap om hur denna föroreningsbelastning med ökat fiskintag kommer påverka befolkningen i landet. Syftet med denna studie var därför att jämföra Hg- och PFAS-koncentrationer mellan områden och arter, utvärdera ackumuleringsmönster och bedöma hälsoriskerna med ökad fiskkonsumtion i landet. Under oktober 2014 samlades totalt 97 individer in från fem arter (Labeobarbus megastoma, Labeobarbus gorguari, Labeobarbus intermedius, Oreochromis niloticus och Clarias gariepinus) och från sju olika platser i Lake Tana. Dissektionen utfördes i Bahir Dar (där muskelprover togs från dorsala rygglinjen) och sedan fördes proverna till Sveriges lantbruksuniversitet (SLU) för analys. För att bestämma skillnader och korrelationer mellan områden och arter, samt mellan Hg och olika PFASer, utfördes statistiska analyser och för att utvärdera hälsorisken av en ökad fiskkonsumtion beräknades riskfaktorer för båda ämnena. Resultaten påvisade flertalet likheter mellan Hg och PFASer, bland annat högre koncentrationer i piskivora fiskarter (L. megastoma and L. gorguari) än icke-piskivora och även likheter i koncentrationer mellan provområdena. Hg-koncentrationerna varierade mellan 0-639 ng g-1 våtvikt (vv), med ett medel på 137 ng g-1 vv för alla arter. Sju PFASer detekterades i analysen (PFNA, PFDA, PFUnDA, PFDoDA, PFTeDA, PFBS, PFOS), där ∑PFSA koncentrationerna varierade mellan icke-detekterbara till 3,6 ng g-1 vv. PFDA förekom i alla arter och områden, medan PFOS bara fanns i förhöjda värden i piskivora arter. Den funna positiva korrelationen mellan PFOS och Hg antyder att dessa ämnen har liknande ackumulationsmönster. De beräknade riskfaktorerna visade att en fiskkonsumtions-ökning inte skulle utgöra en risk för den etiopiska befolkningen med avseende på Hg- och PFAS-halter. En varierad fiskkonsumtion är dock av stor vikt eftersom flertalet individer från de piskivora arterna innehöll högre Hg-koncentrationer än den av WHO rekommenderade gränsen på 0,5 μg g-1 vv.
|
2 |
Intensifying Agricultural Water Management in the Tropics : A cause of water shortage or a source of resilience?Dile, Yihun January 2014 (has links)
Frequent climatic shocks have presented challenges for rainfed agriculture in sub-Saharan Africa. Appropriate water management practices are among the solutions to the challenges. The role of water harvesting in achieving sustainable agricultural intensification and specified resilience was explored. Suitable areas for water harvesting in the Upper Blue Nile basin were identified. The usefulness of the Curve Number method for surface runoff estimation was evaluated, and was found to perform satisfactorily. The impact of climate change in the Lake Tana sub-basin was studied. A decision support system was developed for locating and sizing of water harvesting ponds in the SWAT model. Methodological developments enabled analysis of the implications of water harvesting intensification in a meso-scale watershed in the Lake Tana sub-basin. Results suggest that water harvesting can increase agricultural productivity, sustain ecosystems and build specified resilience, and thereby contribute to sustainable agricultural intensification. There is considerable potential for water harvesting in the Upper Blue Nile Basin. Rainfall may increase in the Lake Tana sub-basin due to climate change. Supplementary irrigation from water harvesting ponds and better nutrient application increased staple crop production by up to three-fold. Moreover, a substantial amount of cash crop was produced using dry seasonal irrigation. Water harvesting altered the streamflow regime, and reduced sediment loss from the watershed. Water harvesting can play an important role in food security. It showed potential to buffer climatic variability. In the watershed studied, water harvesting will not compromise the environmental water requirements. Instead, increased low flows, and reduced flooding and sediment loss may benefit the social-ecological systems. The adverse effects of disturbance of the natural flow variability and sediment influx to certain riverine ecosystems warrant detailed investigation. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript. Paper 5: Epub ahead of print. Paper 6: Manuscript.</p> / Water resources management and social-ecological resilience
|
3 |
Modelling Hydrological and Hydrodynamic Processes in Lake Tana Basin, EthiopiaSetegn, Shimelis Gebriye January 2010 (has links)
Lake Tana Basin is of significant importance to Ethiopia concerning water resources aspects and the ecological balance of the area. The growing high demands in utilizing the high potentials of water resource of the Lake to its maximal limit, pictures a disturbing future for the Lake. The objective of this study was to assess the influence of topography, soil, land use and climatic varia-bility on the hydrological and hydrodynamic processes of the Lake Tana Basin. The physically based SWAT model was successfully calibrated and validated for flow and sediment yield. Se-quential uncertainty fitting (SUFI-2), parameter solution (ParaSol) and generalized likelihood un-certainty estimation (GLUE) calibration and uncertainty analysis methods were compared and used for the set-up of the SWAT model. There is a good agreement between the measured and simulated flows and sediment yields. SWAT and GIS based decision support system that uses multi-criteria evaluation (MCE) was used to identify the most vulnerable areas to soil erosion in the basin. The results indicated that 12 to 30.5% of the watershed is high erosion potential. Pro-jected changes in precipitation and temperature in the basin for two seasons were analyzed using outputs from fifteen global climate models (GCMs). A historical-modification procedure was used to downscale large scale outputs from GCM models to watershed-scale climate data. The results showed significant changes in streamflow and other hydrological parameters in the period between 2045-2100. SWAT was combined with a three dimensional hydrodynamic model, GEMSS to investigate the flow structure, stratification, the flushing time, lake water balance and finally the Lake‘s water level response to planned water removal. We have found an alarming and dramatic fall of the water levels in Lake Tana as response to the planned water withdrawal. The combination of the two models can be used as a decision support tools to better understand and manage land and water resources in watersheds and waterbodies. The study showed that the Lake Tana Basin may experience a negative change in water balance in the forthcoming decades due to climate change as well as over abstraction of water resources. / QC 20100720
|
4 |
Hydrological and sediment Yield modelling in Lake Tana Basin, Blue Nile EthiopiaSetegn, Shimelis Gebriye January 2008 (has links)
<p>Land and water resources degradation are the major problems on the Ethiopian highlands. Poor land use practices and improper management systems have played a significant role in causing high soil erosion rates, sediment transport and loss of agricultural nutrients. So far limited meas-ures have been taken to combat the problems. In this study a physically based watershed model, SWAT2005 was applied to the Northern Highlands of Ethiopia for modelling of the hydrology and sediment yield. The main objective of this study was to test the performance and feasibility of SWAT2005 model to examine the influence of topography, land use, soil and climatic condi-tion on streamflows, soil erosion and sediment yield. The model was calibrated and validated on four tributaries of Lake Tana as well as Anjeni watershed using SUFI-2, GLUE and ParaSol algo-rithms. SWAT and GIS based decision support system (MCE analysis) were also used to identify the most erosion prone areas in the Lake Tana Basin. Streamflows are more sensitive to the hy-drological response unites definition thresholds than subbasin discretization. Prediction of sedi-ment yield is highly sensitive to subbasin size and slope discretization. Baseflow is an important component of the total discharge within the study area that contributes more than the surface runoff. There is a good agreement between the measured and simulated flows and sediment yields with higher values of coefficients of determination and Nash Sutcliffe efficiency. The an-nual average measured sediment yield in Anjeni watershed was 24.6 tonnes/ha. The annual aver-age simulated sediment yield was 27.8 and 29.5 tonnes/ha for calibration and validation periods, respectively. The SWAT model indicated that 18.5 % of the Lake Tana Basin is erosion potential areas. Whereas the MCE result indicated that 25.5 % of the basin are erosion potential areas. The calibrated model can be used for further analysis of the effect of climate and land use change as well as other different management scenarios on streamflows and soil erosion. The result of the study could help different stakeholders to plan and implement appropriate soil and water conser-vation strategies.</p>
|
5 |
Hydrological and sediment yield modelling in Lake Tana Basin, Blue Nile EthiopiaSetegn, Shimelis Gebriye January 2008 (has links)
Land and water resources degradation are the major problems on the Ethiopian highlands. Poor land use practices and improper management systems have played a significant role in causing high soil erosion rates, sediment transport and loss of agricultural nutrients. So far limited meas-ures have been taken to combat the problems. In this study a physically based watershed model, SWAT2005 was applied to the Northern Highlands of Ethiopia for modelling of the hydrology and sediment yield. The main objective of this study was to test the performance and feasibility of SWAT2005 model to examine the influence of topography, land use, soil and climatic condi-tion on streamflows, soil erosion and sediment yield. The model was calibrated and validated on four tributaries of Lake Tana as well as Anjeni watershed using SUFI-2, GLUE and ParaSol algo-rithms. SWAT and GIS based decision support system (MCE analysis) were also used to identify the most erosion prone areas in the Lake Tana Basin. Streamflows are more sensitive to the hy-drological response unites definition thresholds than subbasin discretization. Prediction of sedi-ment yield is highly sensitive to subbasin size and slope discretization. Baseflow is an important component of the total discharge within the study area that contributes more than the surface runoff. There is a good agreement between the measured and simulated flows and sediment yields with higher values of coefficients of determination and Nash Sutcliffe efficiency. The an-nual average measured sediment yield in Anjeni watershed was 24.6 tonnes/ha. The annual aver-age simulated sediment yield was 27.8 and 29.5 tonnes/ha for calibration and validation periods, respectively. The SWAT model indicated that 18.5 % of the Lake Tana Basin is erosion potential areas. Whereas the MCE result indicated that 25.5 % of the basin are erosion potential areas. The calibrated model can be used for further analysis of the effect of climate and land use change as well as other different management scenarios on streamflows and soil erosion. The result of the study could help different stakeholders to plan and implement appropriate soil and water conser-vation strategies. / QC 20101123
|
Page generated in 0.0548 seconds