51 |
Wave Functions of Integrable ModelsMei, Zhongtao 29 October 2018 (has links)
No description available.
|
52 |
Time Domain Scattering From Single And Multiple ObjectsAzizoglu, Suha Alp 01 June 2008 (has links) (PDF)
The importance of the T-matrix method is well-known when frequency domain scattering problems are of interest. With the relatively recent and wide-spread interest in time domain scattering problems, similar applications of the T-matrix method are expected to be useful in the time domain. In this thesis, the time domain spherical scalar wave functions are introduced, translational addition theorems for the time domain spherical scalar wave functions necessary for the solution of multiple scattering problems are given, and the formulation of time domain scattering of scalar waves by two spheres and by two scatterers of arbitrary shape is presented. The whole analysis is performed in the time domain requiring no inverse Fourier integrals to be evaluated. Scattering examples are studied in order to check the numerical accuracy, and demonstrate the utility of the expressions.
|
53 |
Development of analytical solutions for quasistationary electromagnetic fields for conducting spheroids in the proximity of current-carrying turns.Jayasekara, Nandaka 04 January 2013 (has links)
Exact analytical solutions for the quasistationary electromagnetic fields in the presence of conducting objects require the field solutions both internal and external to the conductors. Such solutions are limited for certain canonically shaped objects but are useful in testing the accuracy of various approximate models and numerical methods developed to solve complex problems related to real world conducting objects and in calibrating instruments designed to measure various field quantities. Theoretical investigations of quasistationary electromagnetic fields also aid in improving the understanding of the physical phenomena of electromagnetic induction.
This thesis presents rigorous analytical expressions derived as benchmark solutions for the quasistationary field quantities both inside and outside, Joule losses and the electromagnetic forces acting upon a conducting spheroid placed in the proximity of a non-uniform field produced by current-carrying turns. These expressions are used to generate numerous numerical results of specified accuracy and selected results are presented in a normalized form for extended ranges of the spheroid axial ratio, the ratio of the depth of penetration to the semi-minor axis and the position of the inducing turns relative to the spheroids. They are intended to constitute reference data to be employed for comprehensive comparisons of results from approximate numerical methods or from boundary impedance models used for real world conductors.
Approximate boundary conditions such as the simpler perfect electric conductor model or the Leontovich surface impedance boundary condition model can be used to obtain approximate solutions by only analyzing the field external to the conducting object. The range of validity of these impedance boundary condition models for the analysis of axisymmetric eddy-current problems is thoroughly investigated. While the simpler PEC model can be employed only when the electromagnetic depth of penetration is much smaller than the smallest local radius of curvature, the results obtained using the surface impedance boundary condition model for conducting prolate and oblate spheroids of various axial ratios are in good agreement with the exact results for skin depths of about 1/5 of the semi-minor axis when calculating electromagnetic forces and for skin depths less than 1/20 of the semi-minor axis when calculating Joule losses.
|
54 |
Development of analytical solutions for quasistationary electromagnetic fields for conducting spheroids in the proximity of current-carrying turns.Jayasekara, Nandaka 04 January 2013 (has links)
Exact analytical solutions for the quasistationary electromagnetic fields in the presence of conducting objects require the field solutions both internal and external to the conductors. Such solutions are limited for certain canonically shaped objects but are useful in testing the accuracy of various approximate models and numerical methods developed to solve complex problems related to real world conducting objects and in calibrating instruments designed to measure various field quantities. Theoretical investigations of quasistationary electromagnetic fields also aid in improving the understanding of the physical phenomena of electromagnetic induction.
This thesis presents rigorous analytical expressions derived as benchmark solutions for the quasistationary field quantities both inside and outside, Joule losses and the electromagnetic forces acting upon a conducting spheroid placed in the proximity of a non-uniform field produced by current-carrying turns. These expressions are used to generate numerous numerical results of specified accuracy and selected results are presented in a normalized form for extended ranges of the spheroid axial ratio, the ratio of the depth of penetration to the semi-minor axis and the position of the inducing turns relative to the spheroids. They are intended to constitute reference data to be employed for comprehensive comparisons of results from approximate numerical methods or from boundary impedance models used for real world conductors.
Approximate boundary conditions such as the simpler perfect electric conductor model or the Leontovich surface impedance boundary condition model can be used to obtain approximate solutions by only analyzing the field external to the conducting object. The range of validity of these impedance boundary condition models for the analysis of axisymmetric eddy-current problems is thoroughly investigated. While the simpler PEC model can be employed only when the electromagnetic depth of penetration is much smaller than the smallest local radius of curvature, the results obtained using the surface impedance boundary condition model for conducting prolate and oblate spheroids of various axial ratios are in good agreement with the exact results for skin depths of about 1/5 of the semi-minor axis when calculating electromagnetic forces and for skin depths less than 1/20 of the semi-minor axis when calculating Joule losses.
|
55 |
Study of the Quasielastic {sup 3}He(e,e{prime}p) Reaction at Q{sup 2}=1.5 (GeV/c){sup 2} up to Missing Momenta of 1 GeV/cMarat Rvachev January 2003 (has links)
Thesis (Ph.D.); Submitted to Massachusetts Inst. of Tech., Cambridge, MA (US); 1 Sep 2003. / Published through the Information Bridge: DOE Scientific and Technical Information. "JLAB-PHY-03-167" "DOE/ER/40150-2745" Marat Rvachev. 09/01/2003. Report is also available in paper and microfiche from NTIS.
|
56 |
Searching for Short Range Correlations Using (e,e'NN) ReactionsBin Zhang January 2003 (has links)
Thesis; Thesis information not provided; 1 Feb 2003. / Published through the Information Bridge: DOE Scientific and Technical Information. "JLAB-PHY-03-38" "DOE/ER/40150-2762" Bin Zhang. 02/01/2003. Report is also available in paper and microfiche from NTIS.
|
57 |
Complexities in Nonadiabatic Dynamics of Small Molecular AnionsOpoku-Agyeman, Bernice 24 May 2018 (has links)
No description available.
|
58 |
Effet Hall quantique fractionnaire dans la bicouche et le puits large / Fractional quantum Hall effect in bilayers and wide quantum wellsThiébaut, Nicolas 02 April 2015 (has links)
Les progrès technologiques dans la fabrication des semi-conducteurs permettent, depuis le début des années 80, de réaliser des dispositifs dans lesquels les électrons sont fortement confinés dans un plan, on parle de système d'électrons bidimensionnels. L'application d'un champ magnétique perpendiculaire intense à ce système permit l'observation des effets Hall quantiques (EHQ), entier en 1980 puis fractionnaire en 1982. En présence du champ magnétique et aux températures extrêmement faibles qui sont concernées, le spectre énergétique des électrons bidimensionnels est quantifié en niveaux de Landau macroscopiquement dégénérés. Le comportement du système est alors déterminé par le facteur de remplissage des niveaux de Landau. L'EHQ entier apparaît autour des valeurs de champ magnétiques qui correspondent à un remplissage entier des niveaux Landau, tandis que son pendant fractionnaire est obtenu autour de certaines fractions du facteur de remplissage ν (ν =1/3, 2/5, 5/2, …) . Alors qu'à remplissage ν entier c'est le comportement individuel des électrons qui gouverne le comportement du système, aux facteurs de remplissage fractionnaires les corrélations électroniques dominent. En raison de ce caractère fortement corrélé, l'EHQ fractionnaire sous-tend un effort de recherche expérimental et théorique important depuis sa découverte. En effet, dans le régime fractionnaire les corrélations fortes induisent des propriétés inédites telles l'existence de quasi-particules de charge fractionnaire, mais elles rendent également la description théorique du système ardue. En 1983, Robert Laughlin proposa une fonction d'onde variationnelle modèle pour la description de l'EHQ fractionnaire observé à remplissage ν=1/3, dont il discuta la validité au regard d'une étude numérique approfondie des interactions entre les électrons. Le succès de cette méthode l'éleva au rang de paradigme, et de nombreuses fonctions d'onde d'essai ont depuis été proposées pour l'explication des effets Hall quantiques observés aux autres facteurs de remplissages. Notamment, la fonction d'onde de Moore et Read s'avère pertinente pour la description de l'EHQ observé à demi-remplissage du second niveau de Landau. Celle-ci suggère l'existence de quasi-particules non-abéliennes qui génère des espoirs importants de par ses applications potentielles en informatique quantique protégée topologiquement. Bien que l'EHQ ait également été observé à demi-remplissage du plus bas niveau de Landau, la nature de l'état sous-jacent est encore débatue. Celui-ci n'est observé que dans les systèmes bicouches et dans les puits larges qui sont au centre de ce travail de thèse. Les puits larges désignent les systèmes dans lesquels l'épaisseur du système d'électrons bidimensionnel ne peut plus être négligée, typiquement à des épaisseurs de l'ordre de 100 nm. En raison du potentiel de confinement ressenti par les électrons, leurs niveaux d'énergies dans la direction du confinement sont quantifiés en sous-bandes. Dans un puits extrêmement fin seule la plus basse sous-bande est peuplée et le degré de liberté correspondant est alors gelé, mais dans les puits large les sous-bandes excitées sont pertinentes. Dans ces conditions l'EHQ fractionnaire à demi-remplissage peut également résulter de la stabilisation d'un état à deux composantes qui peuple les sous-bande excitées. Cet état proposé par Bertrand Halperin en 1983 entre en compétition avec l'état de Moore et Read. En plus de ces deux états, un état métallique de fermions composite est possible, ainsi qu'un cristal électronique de Wigner au comportement isolant. La compétition entre ces différents états est arbitrée par une étude de Monte-Carlo variationnel combinée à des calculs de diagonalisation exacte. La nature de l'état qui est stabilisé dépend de la nature du potentiel de confinement. Dans ce manuscrit de thèse sont discutés les dispositifs de la bicouche, du puits large, ainsi que du puits large en présence d'un biais externe. / Due to technological advances in the manufacture of semiconductors enable, in it possible since the early 80s to create devices in which electrons are strongly confined in a plane, thus effectively realizing a two-dimensional electron system. The application of a strong perpendicular magnetic field to this system led to the observation of the integer quantum Hall effect (QHE) in 1980 and fractional QHE in 1982. Under a strong magnetic field the energy spectrum of the two-dimensional electrons is quantified in Landau levels that are macroscopically degenerate, and the behavior of the system is governed by the filling factor of Landau levels. The integer QHE appears around magnetic field values which correspond to an integer filling of the Landau levels, while the fractional equivalent is obtained around certain fractions of the filling factor ν (ν = 1/3, 2/5, 5 / 2, ...). Although for integers values of ν is the individual behavior of electrons dictates the behavior of the system, the fractional filling factors the electronic correlations dominate. Because of those strong correlations, the underlying fractional QHE motivates an important experimental and theoretical research effort since its discovery. Indeed, in the fractional regime the strong correlations induce novel properties such as the existence fractionally-charged quasiparticles, but they also make the theoretical description of the system laborious. In 1983 Robert Laughlin proposed a variational wave function model for the description of the QHE observed at fractional filling ν = 1/3. He discussed the validity of this trial wave function in a comprehensive numerical study of interactions between electrons. The success of this method made it a paradigm, and many test wave functions have been proposed since then for the explanation of quantum Hall effects observed with other fillings factors. In particular, the wave function of Moore and Read is relevant for the description of the QHE observed at half-filling the second Landau level. This suggests the existence of non-Abelian quasiparticles with potential applications in topologically-protected quantum computing. QHE has also been observed at half filling the lowest Landau level, but the nature of the underlying quantum state is still debated; it is observed that in bilayer systems and wells wide. The large wells, which are the focus of this thesis, refer to systems in which the thickness of the two-dimensional electron system cannot be trivially neglected and usually corresponds to a thickness of about 100 nm. Due to the confinement potential felt by the electrons, their energy levels in the direction of confinement are quantized in sub-bands. In a narrow well only the lowest subband is populated and the corresponding degree of freedom is thus frozen, but in a wide well the excited sub-bands are relevant. Under these conditions fractional QHE at half-filling can also result from the stabilization of a two-state components that also populates the excited sub-band. The corresponding trial state, proposed by Bertrand Halperin in 1983, competes with the state of Moore and Read. In addition to these two states, a metal composite fermion state is a relevant trial state as well as an electronic Wigner crystal, the latter behaving as an insulator. The competition between these states is refered by a variational Monte-Carlo study combined with exact diagonalization calculations. The nature of the state that is stabilized depends on the nature of the confinement potential. In this PhD thesis three confinement potentials are studied: the bilayer, the wide well, and the wide well in the presence of an external bias.
|
59 |
A Quaternionic Version Theory related to Spheroidal FunctionsLeitão da Cruz Morais, João Pedro 11 January 2023 (has links)
In dieser Arbeit wird eine neue Theorie der quaternionischen Funktionen vorgestellt, welche das Problem der Bestapproximation von Familien prolater und oblater sphäroidalen Funktionen im Hilberträumen behandelt.
Die allgemeine Theorie beginnt mit der expliziten Konstruktion von orthogonalen Basen für Räume, definiert auf sphäroidalen Gebieten mit beliebiger Exzentrizität, deren Elemente harmonische, monogene und kontragene Funktionen sind und durch die Form der Gebiete parametrisiert werden. Eine detaillierte Studie dieser grundlegenden Elemente wird in dieser Arbeit durchgeführt. Der Begriff der kontragenen Funktion hängt vom Definitionsbereich ab und ist daher keine lokale Eigenschaft, während die Begriffe der harmonischen und monogenen Funktionen lokal sind. Es werden verschiedene Umwandlungsformeln vorgestellt, die Systeme harmonischer, monogener und kontragener Funktionen auf Sphäroiden unterschiedlicher Exzentrizität in Beziehung setzen. Darüber hinaus wird die Existenz gemeinsamer nichttrivialer kontragener Funktionen für Sphäroide jeglicher Exzentrizität gezeigt.
Der zweite wichtige Beitrag dieser Arbeit betrifft eine quaternionische Raumfrequenztheorie für bandbegrenzte quaternionische Funktionen. Es wird eine neue Art von quaternionischen Signalen vorgeschlagen, deren Energiekonzentration im Raum und in den Frequenzbereichen unter der quaternionischen Fourier-Transformation maximal ist. Darüber hinaus werden diese Signale im Kontext der Spektralkonzentration als Eigenfunktionen eines kompakten und selbstadjungierteren quaternionischen Integraloperators untersucht und die grundlegenden Eigenschaften ihrer zugehörigen Eigenwerte werden detailliert beschrieben. Wenn die Konzentrationsgebiete beider Räume kugelförmig sind, kann der Winkelanteil dieser Signale explizit gefunden werden, was zur Lösung von mehreren eindimensionalen radialen Integralgleichungen führt.
Wir nutzen die theoretischen Ergebnisse und harmonische Konjugierten um Klassen monogener Funktionen in verschiedenen Räumen zu konstruieren. Zur Charakterisierung der monogenen gewichteten Hardy- und Bergman-Räume in der Einheitskugel werden zwei konstruktive Algorithmen vorgeschlagen. Für eine reelle harmonische Funktion, die zu einem gewichteten Hardy- und Bergman-Raum gehört, werden die harmonischen Konjugiert in den gleichen Räumen gefunden. Die Beschränktheit der zugrundeliegenden harmonischen Konjugationsoperatoren wird in den angegebenen gewichteten Räumen bewiesen. Zusätzlich wird ein quaternionisches Gegenstück zum Satz von Bloch für monogene Funktionen bewiesen. / This work presents a novel Quaternionic Function Theory associated with the best approximation problem in the setting of Hilbert spaces concerning families of prolate and oblate spheroidal functions.
The general theory begins with the explicit construction of orthogonal bases for the spaces of harmonic, monogenic, and contragenic functions defined in spheroidal domains of arbitrary eccentricity, whose elements are parametrized by the shape of the corresponding spheroids. A detailed study regarding the elements that constitute these bases is carried out in this thesis. The notion of a contragenic function depends on the domain, and, therefore, it is not a local property in contrast to the concepts of harmonic and monogenic functions. Various conversion formulas that relate systems of harmonic, monogenic, and contragenic functions associated with spheroids of differing eccentricity are presented. Furthermore, the existence of standard nontrivial contragenic functions is shown for spheroids of any eccentricity.
The second significant contribution presented in this work pertains to a quaternionic space-frequency theory for band-limited quaternionic functions. A new class of quaternionic signals is proposed, whose energy concentration in the space and the frequency domains are maximal under the quaternion Fourier transform. These signals are studied in the context of spatial-frequency concentration as eigenfunctions of a compact and self-adjoint quaternion integral operator. The fundamental properties of their associated eigenvalues are described in detail. When the concentration domains are spherical in both spaces, the angular part of these signals can be found explicitly, leading to a set of one-dimensional radial integral equations.
The theoretical framework described in this work is applied to the construction of classes of monogenic functions in different spaces via harmonic conjugates. Two constructive algorithms are proposed to characterize the monogenic weighted Hardy and Bergman spaces in the Euclidean unit ball. For a real-valued harmonic function belonging to a Hardy and a weighted Bergman space, the harmonic conjugates in the same spaces are found. The boundedness of the underlying harmonic conjugation operators is proven in the given weighted spaces. Additionally, a quaternionic counterpart of Bloch’s Theorem is established for monogenic functions.
|
60 |
Dynamics of isolated quantum many-body systems far from equilibriumSchmitt, Markus 11 January 2018 (has links)
No description available.
|
Page generated in 0.1235 seconds