• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 402
  • 331
  • 99
  • 66
  • 57
  • 33
  • 25
  • 18
  • 14
  • 8
  • 8
  • 5
  • 4
  • 4
  • 3
  • Tagged with
  • 1293
  • 562
  • 256
  • 171
  • 139
  • 135
  • 134
  • 131
  • 130
  • 105
  • 100
  • 92
  • 91
  • 90
  • 89
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Interpolation von Waveletkoeffizienten und Sollwertkurven

Ende, Marco. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Bremen.
322

Erfassung der Schadensentwicklung von mineralischen Baustoffen mit Hilfe der Ultraschallphasenspektroskopie

Ruck, Hans-Jürgen. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Stuttgart.
323

Speicher- und Kompressionsverfahren für Volumenvisualisierungshardware

Wetekam, Gregor. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Tübingen.
324

Automatische Erkennung von Trends in Prozessgrößen /

Flehmig, Folko. January 2006 (has links)
Techn. Hochsch., Diss.--Aachen.
325

Redução de ruído em sinais de voz no domínio wavelet

Duarte, Marco Aparecido Queiroz [UNESP] 01 February 2005 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:51Z (GMT). No. of bitstreams: 0 Previous issue date: 2005-02-01Bitstream added on 2014-06-13T20:00:56Z : No. of bitstreams: 1 duarte_maq_dr_ilha.pdf: 2208096 bytes, checksum: 7daf91683010b0f39c715c9cc1ded5d8 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho é feito um estudo sobre os métodos de redução de ruído aditivo em sinais de voz baseados em wavelets e, através deste estudo, propõe-se um novo método de redução de ruído em sinais de voz no domínio wavelet. O princípio básico da maioria dos métodos de redução de ruído baseados em wavelets é a determinação e aplicação de um limiar, que permite bons resultados para sinais contaminados por ruído branco, mas não são eficientes no processamento de sinais contaminados por ruído colorido, que é o tipo de ruído mais comum em situações reais. Nesses métodos, o limiar, geralmente, é calculado nos intervalos de silêncio e aplicado em todo o sinal. Os coeficientes no domínio wavelet são comparados com este limiar e aqueles que estão abaixo deste valor são eliminados, fazendo assim uma aplicação linear deste limiar. Esta eliminação acaba causando descontinuidades no tempo e na freqüência no sinal processado. Além disso, a forma com que o limiar é calculado pode degradar os trechos de voz do sinal processado, principalmente nos casos em que o limiar depende fortemente da última janela do último trecho de silêncio. O método proposto neste trabalho também é baseado em corte por limiar, mas em vez de uma aplicação linear do limiar, ele faz uma aplicação não-linear, o que evita as descontinuidades causadas por outros algoritmos. O limiar é calculado nos trechos de silêncio e não depende apenas da última janela do último trecho de silêncio, mas sim de todas as janelas, já que este limiar é uma média de todos os limiares calculados neste trecho. Isto faz com que a redução do ruído seja mais uniforme e introduza menos distorções no sinal processado. Além disso, nos trechos de voz ainda é calculado um novo limiar que também será usado, em conjunto com o limiar calculado no silêncio. Isto faz com que a energia da janela que... . / In this work a study of additive noise reduction in speech based on wavelets is presented and, based on this study a new noise reduction method in speech in the wavelet domain is proposed. The basic idea of most methods of noise reduction based on wavelets is the determination and application of a threshold, that produces good results for signals contaminated by white noise, but they are not very efficient in processing signals contaminated by colored noise, which is more common in real situations. In those methods, the threshold, generally, is calculated in the silence intervals and applied to the whole signal. The coefficients in the wavelet domain are compared with this threshold and those that are below this value are eliminated, making a linear application of this threshold. This elimination causes discontinuities in time and frequency of the processed signal. Besides, the way that the threshold is computed can degrade the voice segments of the processed signal, principally when the threshold depends strongly on the last window of the last silence segment. The proposed method in this work is also based in thresholding, but, instead of a linear application of the threshold, it makes a non-linear application, which avoids the discontinuities caused by other algorithms. The threshold is calculated in the silence segments and is not dependent only on the last window of the last silence segment, but of all the windows, since this threshold is an average of all thresholds calculated in this segment. It makes noise reduction more uniform and introduces less distortion in the processed signal. Besides, in the voice segments a new threshold is calculated that will be also used with the threshold calculated in the silence. It makes that the energy of the window that is being processed is also considered. This way, it is... (Complete abstract, click electronic address below).
326

Remo??o de ru?dos s?smicos utilizando transformada de wavelet 1D e 2D com software em desenvolvimento

Ecco, Daniel 05 April 2011 (has links)
Made available in DSpace on 2014-12-17T14:08:44Z (GMT). No. of bitstreams: 1 DanielE_DISSERT.pdf: 1217613 bytes, checksum: edb565b9e30a0c09780fcf4efd4a52dc (MD5) Previous issue date: 2011-04-05 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / In the Hydrocarbon exploration activities, the great enigma is the location of the deposits. Great efforts are undertaken in an attempt to better identify them, locate them and at the same time, enhance cost-effectiveness relationship of extraction of oil. Seismic methods are the most widely used because they are indirect, i.e., probing the subsurface layers without invading them. Seismogram is the representation of the Earth s interior and its structures through a conveniently disposed arrangement of the data obtained by seismic reflection. A major problem in this representation is the intensity and variety of present noise in the seismogram, as the surface bearing noise that contaminates the relevant signals, and may mask the desired information, brought by waves scattered in deeper regions of the geological layers. It was developed a tool to suppress these noises based on wavelet transform 1D and 2D. The Java language program makes the separation of seismic images considering the directions (horizontal, vertical, mixed or local) and bands of wavelengths that form these images, using the Daubechies Wavelets, Auto-resolution and Tensor Product of wavelet bases. Besides, it was developed the option in a single image, using the tensor product of two-dimensional wavelets or one-wavelet tensor product by identities. In the latter case, we have the wavelet decomposition in a two dimensional signal in a single direction. This decomposition has allowed to lengthen a certain direction the two-dimensional Wavelets, correcting the effects of scales by applying Auto-resolutions. In other words, it has been improved the treatment of a seismic image using 1D wavelet and 2D wavelet at different stages of Auto-resolution. It was also implemented improvements in the display of images associated with breakdowns in each Auto-resolution, facilitating the choices of images with the signals of interest for image reconstruction without noise. The program was tested with real data and the results were good / Na atividade explorat?ria de hidrocarbonetos a grande inc?gnita ? a localiza??o das jazidas. Grandes esfor?os s?o empreendidos na tentativa de melhor identific?-las, localiz?-las e, ao mesmo tempo, otimizar a rela??o custo-benef?cio da extra??o de Petr?leo. Os m?todos s?smicos s?o os mais utilizados pelo fato de serem indiretos, isto ?, sondam as camadas de subsuperf?cie sem invadi-las. O sismograma ? a representa??o do interior da Terra e de suas estruturas atrav?s de um arranjo convenientemente disposto dos dados obtidos por meio da s?smica de reflex?o. Um grande problema nessa representa??o ? a intensidade e variedade de ru?dos presentes no sismograma, como o ru?do de rolamento superficial que contamina os sinais relevantes e pode mascarar as informa??es desejadas, trazidas por ondas espalhadas em regi?es mais profundas das camadas geol?gicas. Desenvolvemos uma ferramenta para suprimir estes ru?dos que usa transformadas Wavelets 1D e 2D. O programa, em linguagem Java, faz a separa??o das imagens S?smicas considerando as dire??es (horizontal, vertical e mistas ou locais) e faixas de comprimentos de ondas que formam essas imagens, usando Wavelets de Daubechies, Autoresolu??o que duplica o comprimento das ondas e Produto Tensorial das bases de Wavelets. Desenvolvemos a op??o, em uma mesma imagem, de usar o produto tensorial de Wavelets de dimens?o 2 ou produto tensorial de Wavelets de dimens?o 1 pelas identidades. Neste ?ltimo caso, temos a Decomposi??o em Wavelets de um sinal bidimensional em uma ?nica dire??o. Esta decomposi??o permite alongar numa determinada dire??o as Wavelets bidimensionais, corrigindo efeitos de escalas ao aplicarmos Autoresolu??es. Em outras palavras, aperfei?oamos o tratamento de uma imagem s?smica, usandoWavelet 1D eWavelet 2D em etapas diferentes de Autoresolu??es. Tamb?m implementamos melhorias na visualiza??o das imagens associadas ?s decomposi??es em cada Autoresolu??o, facilitando as escolhas das imagens com os sinais de interesse para reconstru??o da imagem sem os ru?dos. O programa foi testado com dados reais e os resultados obtidos foram de boa qualidade
327

Šíření volatility mezi ropou a komoditními potravinami / Volatility spillovers between crude oil and food commodities

Hrycej, Martin January 2018 (has links)
In this thesis, we analyze volatility spillovers between crude oil and food commodities. The principal hypothesis assumes crude oil to behave as a production factor of the agricultural food commodities, thence we are looking for appropriate price effects. We mainly employ wavelet coherence and partial wavelet coherence, which provide us with valuable insight into the commodities nexus, without any strict restraints and assumptions levied on our data. Secondly, we build a DCC-GARCH model in order to model the presumed volatility spillovers. We also perform several simple benchmark analyses, in particular we test for Granger causality and we compute the Pearson correlation coefficients. Our data sample, including 10 commodities and 2 indices, covers the latest decade, significantly widening the existing contextual literature. Our results are mostly compliant with related literature, especially regarding the crude oil-fuels bundle and food commodities bundle, respectively. Considering the main research question of volatility spillovers between food commodities and crude oil, our results are indicating reasonably strong relationships with crude oil for soybeans and corn, leaving cotton and wheat rather on the verge of strong relationship and finding cattle to be completely unrelated. Main merits of the thesis...
328

Wavelet packet filter bank selection for texture retrieval

Vidal Salazar, Andrea January 2017 (has links)
Magíster en Ciencias de la Ingeniería, Mención Eléctrica. Ingeniera Civil Eléctrica / Durante los últimos años, el avance de la tecnología de captura y almacenamiento ha generado un volumen sin precedentes de imágenes digitales almacenadas en las bases de datos. Esto plantea el desafío de desarrollar sistemas autónomos que sean eficientes en la búsqueda y organización del contenido digital. Como problema emblemático surgió Content-Based Image Retrieval como área de investigación. Un sistema de indexación de imágenes busca encontrar las imágenes más similares a una en particular y está compuesto de dos etapas: extracción de características y medición de similitud. La primera etapa busca la forma de representar la imagen extrayendo las características más discriminativas, mientras que la segunda etapa es usada para ordenar las imágenes de acuerdo a su similitud. Esta tesis propone el uso de Wavelet Packet para abordar el problema de indexación de imágenes de texturas. Wavelet Packet es una herramienta del procesamiento de señales que no ha sido usada en el estado del arte para enfrentar el problema de indexación y, además, es capaz del proveer distintas representaciones para una imagen. Para seleccionar la mejor representación de Wavelet Packet, este trabajo propone una nueva metodología para el problema de indexación que aborda el problema de selección de bases para la familia de Wavelet Packets utilizando el criterio de Mínima Probabilidad de Error. Como resultado de la implementación de la metodología propuesta, se muestra que las soluciones provistas por Wavelet Packet son adaptivas y mejoran el desempeño del sistema de indexación con respecto a la solución Wavelet, bajo condiciones similares y modelos estadísticos.
329

Wavelet transforms for stereo imaging

Shi, Fangmin January 2002 (has links)
Stereo vision is a means of obtaining three-dimensional information by considering the same scene from two different positions. Stereo correspondence has long been and will continue to be the active research topic in computer vision. The requirement of dense disparity map output is great demand motivated by modern applications of stereo such as three-dimensional high-resolution object reconstruction and view synthesis, which require disparity estimates in all image regions. Stereo correspondence algorithms usually require significant computation. The challenges are computational economy, accuracy and robustness. While a large number of algorithms for stereo matching have been developed, there still leaves the space for improvement especially when a new mathematical tool such as wavelet analysis becomes mature. The aim of the thesis is to investigate the stereo matching approach using wavelet transform with a view to producing efficient and dense disparity map outputs. After the shift invariance property of various wavelet transforms is identified, the main contributions of the thesis are made in developing and evaluating two wavelet approaches (the dyadic wavelet transform and complex wavelet transform) for solving the standard correspondence problem. This comprises an analysis of the applicability of dyadic wavelet transform to disparity map computation, the definition of a waveletbased similarity measure for matching, the combination of matching results from different scales based on the detectable minimum disparity at each scale and the application of complex wavelet transform to stereo matching. The matching method using the dyadic wavelet transform is through SSD correlation comparison and is in particular detailed. A new measure using wavelet coefficients is defined for similarity comparison. The approach applying a dual tree of complex wavelet transform to stereo matching is formulated through phase information. A multiscale matching scheme is applied for both the matching methods. Imaging testing has been made with various synthesised and real image pairs. Experimental results with a variety of stereo image pairs exhibit a good agreement with ground truth data, where available, and are qualitatively similar to published results for other stereo matching approaches. Comparative results show that the dyadic wavelet transform-based matching method is superior in most cases to the other approaches considered.
330

Sparsity Motivated Auditory Wavelet Representation and Blind Deconvolution

Adiga, Aniruddha January 2017 (has links) (PDF)
In many scenarios, events such as singularities and transients that carry important information about a signal undergo spreading during acquisition or transmission and it is important to localize the events. For example, edges in an image, point sources in a microscopy or astronomical image are blurred by the point-spread function (PSF) of the acquisition system, while in a speech signal, the epochs corresponding to glottal closure instants are shaped by the vocal tract response. Such events can be extracted with the help of techniques that promote sparsity, which enables separation of the smooth components from the transient ones. In this thesis, we consider development of such sparsity promoting techniques. The contributions of the thesis are three-fold: (i) an auditory-motivated continuous wavelet design and representation, which helps identify singularities; (ii) a sparsity-driven deconvolution technique; and (iii) a sparsity-driven deconvolution technique for reconstruction of nite-rate-of-innovation (FRI) signals. We use the speech signal for illustrating the performance of the techniques in the first two parts and super-resolution microscopy (2-D) for the third part. In the rst part, we develop a continuous wavelet transform (CWT) starting from an auditory motivation. Wavelet analysis provides good time and frequency localization, which has made it a popular tool for time-frequency analysis of signals. The CWT is a multiresolution analysis tool that involves decomposition of a signal using a constant-Q wavelet filterbank, akin to the time-frequency analysis performed by basilar membrane in the peripheral human auditory system. This connection motivated us to develop wavelets that possess auditory localization capabilities. Gammatone functions are extensively used in the modeling of the basilar membrane, but the non-zero average of the functions poses a hurdle. We construct bona de wavelets from the Gammatone function called Gammatone wavelets and analyze their properties such as admissibility, time-bandwidth product, vanishing moments, etc.. Of particular interest is the vanishing moments property, which enables the wavelet to suppress smooth regions in a signal leading to sparsi cation. We show how this property of the Gammatone wavelets coupled with multiresolution analysis could be employed for singularity and transient detection. Using these wavelets, we also construct equivalent lterbank models and obtain cepstral feature vectors out of such a representation. We show that the Gammatone wavelet cepstral coefficients (GWCC) are effective for robust speech recognition compared with mel-frequency cepstral coefficients (MFCC). In the second part, we consider the problem of sparse blind deconvolution (SBD) starting from a signal obtained as the convolution of an unknown PSF and a sparse excitation. The BD problem is ill-posed and the goal is to employ sparsity to come up with an accurate solution. We formulate the SBD problem within a Bayesian framework. The estimation of lter and excitation involves optimization of a cost function that consists of an `2 data- fidelity term and an `p-norm (p 2 [0; 1]) regularizer, as the sparsity promoting prior. Since the `p-norm is not differentiable at the origin, we consider a smoothed version of the `p-norm as a proxy in the optimization. Apart from the regularizer being non-convex, the data term is also non-convex in the filter and excitation as they are both unknown. We optimize the non-convex cost using an alternating minimization strategy, and develop an alternating `p `2 projections algorithm (ALPA). We demonstrate convergence of the iterative algorithm and analyze in detail the role of the pseudo-inverse solution as an initialization for the ALPA and provide probabilistic bounds on its accuracy considering the presence of noise and the condition number of the linear system of equations. We also consider the case of bounded noise and derive tight tail bounds using the Hoe ding inequality. As an application, we consider the problem of blind deconvolution of speech signals. In the linear model for speech production, voiced speech is assumed to be the result of a quasi-periodic impulse train exciting a vocal-tract lter. The locations of the impulses or epochs indicate the glottal closure instants and the spacing between them the pitch. Hence, the excitation in the case of voiced speech is sparse and its deconvolution from the vocal-tract filter is posed as a SBD problem. We employ ALPA for SBD and show that excitation obtained is sparser than the excitations obtained using sparse linear prediction, smoothed `1=`2 sparse blind deconvolution algorithm, and majorization-minimization-based sparse deconvolution techniques. We also consider the problem of epoch estimation and show that epochs estimated by ALPA in both clean and noisy conditions are closer to the instants indicated by the electroglottograph when with to the estimates provided by the zero-frequency ltering technique, which is the state-of-the-art epoch estimation technique. In the third part, we consider the problem of deconvolution of a specific class of continuous-time signals called nite-rate-of-innovation (FRI) signals, which are not bandlimited, but specified by a nite number of parameters over an observation interval. The signal is assumed to be a linear combination of delayed versions of a prototypical pulse. The reconstruction problem is posed as a 2-D SBD problem. The kernel is assumed to have a known form but with unknown parameters. Given the sampled version of the FRI signal, the delays quantized to the nearest point on the sampling grid are rst estimated using proximal-operator-based alternating `p `2 algorithm (ALPAprox), and then super-resolved to obtain o -grid (O. G.) estimates using gradient-descent optimization. The overall technique is termed OG-ALPAprox. We show application of OG-ALPAprox to a particular modality of super-resolution microscopy (SRM), called stochastic optical reconstruction microscopy (STORM). The resolution of the traditional optical microscope is limited by di raction and is termed as Abbe's limit. The goal of SRM is to engineer the optical imaging system to resolve structures in specimens, such as proteins, whose dimensions are smaller than the di raction limit. The specimen to be imaged is tagged or labeled with light-emitting or uorescent chemical compounds called uorophores. These compounds speci cally bind to proteins and exhibit uorescence upon excitation. The uorophores are assumed to be point sources and the light emitted by them undergo spreading due to di raction. STORM employs a sequential approach, wherein each step only a few uorophores are randomly excited and the image is captured by a sensor array. The obtained image is di raction-limited, however, the separation between the uorophores allows for localizing the point sources with high precision. The localization is performed using Gaussian peak- tting. This process of random excitation coupled with localization is performed sequentially and subsequently consolidated to obtain a high-resolution image. We pose the localization as a SBD problem and employ OG-ALPAprox to estimate the locations. We also report comparisons with the de facto standard Gaussian peak- tting algorithm and show that the statistical performance is superior. Experimental results on real data show that the reconstruction quality is on par with the Gaussian peak- tting.

Page generated in 0.0463 seconds