1 |
Cooperative behavior of motor proteinsBeeg, Janina January 2007 (has links)
The cytoskeletal motor protein kinesin-1 (conventional kinesin) is the fast carrier for intracellular cargo transport along microtubules. So far most studies aimed at investigating the transport properties of individual motor molecules. However, the transport in cells usually involves the collective work of more than one motor.
In the present work, we have studied the movement of beads as artificial loads/organelles pulled by several kinesin-1 motors in vitro. For a wide range of motor coverage of the beads and different bead (cargo) sizes the transport parameters walking distance or run length, velocity and force generation are measured.
The results indicate that the transport parameters are influenced by the number of motors carrying the bead. While the transport velocity slightly decreases, an increase in the run length was measured and higher forces are determined, when more motors are involved. The effective number of motors pulling a bead is estimated by measuring the change in the hydrodynamic diameter of kinesin-coated beads using dynamic light scattering. The geometrical constraints imposed by the transport system have been taken into account. Thus, results for beads of different size and motor-surface coverage could be compared. In addition, run length-distributions obtained for the smallest bead size were matched to theoretically calculated distributions. The latter yielded an average number of pulling motors, which is in agreement with the effective motor numbers determined experimentally. / Kinesin-1 (konventionelles Kinesin) ist ein Motorprotein des Zytoskeletts, das für den schnellen intrazellulären Lastentransport auf Mikrotubuli verantwortlich ist. Das Hauptinteresse vieler Studien lag bisher auf der Erforschung der Transporteigenschaften von Einzelmotormolekülen. Der Transport in der Zelle erfordert aber gewöhnlich kollektive Arbeit von mehreren Motoren.
In dieser Arbeit wurde die Bewegung von Kugeln als Modell für Zellorganellen, die von Kinesin-1 Molekülen gezogen werden, in Anhängigkeit von der Motorendichte auf der Kugeloberfläche und unterschiedlichen Kugeldurchmessern in vitro untersuchten. Die Transportparameter Weglänge, Geschwindigkeit und die erzeugte Kraft wurden gemessen.
Die Ergebnisse zeigen, dass die Transportgeschwindigkeit leicht abnimmt, wohingegen die Weglänge und die erzeugten Kräfte mit steigender Molekülkonzentration zunehmen. Die tatsächliche Anzahl der Motoren, die aktiv am Transport der Kugeln beteiligt sind, wurde bestimmt, indem die Änderung des hydrodynamischen Durchmessers der mit Kinesin bedeckten Kugeln mittels dynamischer Lichtstreuung gemessen wurde. Außerdem wurden sterische Effekte des verwendeten Transportsystems in die Berechnung einbezogen. Damit werden Ergebnisse vergleichbar, die für unterschiedliche Kugeldurchmesser und Motorkonzentrationen ermittelt wurden. Zusätzlich wurden die Verteilungen der Weglängen für die kleinste Kugelgröße mit theoretisch ermittelten Verteilungen verglichen. Letzteres ergab durchschnittliche Anzahlen der aktiv am Transport beteiligten Motormoleküle, die mit den experimentell bestimmten Ergebnissen übereinstimmen.
|
2 |
Quantum transport in defective carbon nanotubes at mesoscopic length scalesTeichert, Fabian 17 July 2019 (has links)
This thesis theoretically investigates the electronic transport properties of defective carbon nanotubes (CNTs). For the defects the focus is set to vacancy types. The calculations are performed using quantum transport theory and an underlying density-functional-based tight-binding method. Two algorithmic improvements are derived, which accelerate the common methods for quasi one-dimensional systems for the specific case of (i) randomly distributed defects and (ii) long unit cells. With this, the transmission spectrum and the conductance is calculated as a function of the CNT length, diameter, chiral angle, defect type, defect density, defect fraction, and temperature. The diffusive and the localized transport regime are described by extracting elastic mean free paths and localization lengths for metallic and semiconducting CNTs. Simple analytic models for estimating or even predicting the conductance dependence on the mentioned parameters are derived. Finally, the formation of defect-induced long-range deformations and its influence on the conductance are studied.:1 Introduction
2 Fundamentals
2.1 Carbon nanotubes
2.1.1 Structure
2.1.2 Properties
2.1.3 Defects
2.1.4 Synthesis
2.1.5 Characterization
2.1.6 Applications
2.2 Electron structure theory
2.2.1 Introduction
2.2.2 Density functional theory
2.2.3 Density-functional-based tight binding
2.2.3.1 First-order expansion
2.2.3.2 Creation of the parameter set
2.2.3.3 Second-order expansion
2.2.3.4 Usage
2.3 Electron transport
2.3.1 Equilibrium Green’s-function-based quantum transport theory
2.3.2 Transport regimes
2.3.3 Classical derivation: drift-diffusion equation with a sink
2.3.4 Quantum derivation: Dorokhov-Mello-Pereyra-Kumar theory
A Improved recursive Green’s function formalism for quasi one-dimensional systems with realistic defects (J. Comput. Phys. 334 (2017), 607–619)
A.1 Introduction
A.2 Quantum transport theory
A.3 Recursive Green’s function formalisms
A.3.1 Forward iteration scheme
A.3.2 Recursive decimation scheme
A.3.3 Renormalization decimation algorithm
A.4 Improved RGF+RDA
A.5 Performance test
A.5.1 Random test matrix
A.5.2 Transport through carbon nanotubes
A.6 Summary and conclusions
B Strong localization in defective carbon nanotubes: a recursive Green’s function study (New J. Phys. 16 (2014), 123026)
B.1 Introduction
B.2 Theoretical framework
B.2.1 Transport formalism
B.2.2 Recursive Green’s function formalism
B.2.3 Electronic structure
B.2.4 Strong localization
B.3 Modeling details of the defective system
B.4 Results and discussion
B.4.1 Single defects
B.4.2 Randomly distributed defects
B.4.3 Localization exponent
B.4.4 Diameter dependence and temperature dependence of the localization exponent
B.5 Summary and conclusions
Supplementary material
C Electronic transport in metallic carbon nanotubes with mixed defects within the strong localization regime (Comput. Mater. Sci. 138 (2017), 49–57)
C.1 Introduction
C.2 Theoretical framework
C.3 Modeling details
C.4 Results and discussion
C.4.1 Conductance
C.4.2 Localization exponent
C.4.3 Influence of temperature
C.4.4 Conductance estimation
C.5 Summary and conclusions
D An improved Green’s function algorithm applied to quantum transport in carbon nanotubes (arXiv: 1806.02039)
D.1 Introduction
D.2 Electronic transport
D.3 Decimation technique and renormalization-decimation algorithm
D.4 Renormalization-decimation algorithm for electrodes with long unit cells
D.4.1 Surface Green’s functions
D.4.2 Bulk Green’s functions and electrode density of states
D.5 Complexity measure and performance test
D.6 Exemplary results
D.7 Summary and conclusions
E Electronic transport through defective semiconducting carbon nanotubes (J. Phys. Commun. 2 (2018), 105012)
E.1 Introduction
E.2 Theoretical framework
E.3 Modeling details
E.4 Results and discussion
E.4.1 Transmission and transport regimes
E.4.2 Energy dependent localization exponent and elastic mean free path
E.4.3 Conductance, effective localization exponent and effective elastic mean free path
E.5 Summary and conclusions
Supplementary material
F Influence of defect-induced deformations on electron transport in carbon nanotubes (J. Phys. Commun. 2 (2018), 115023)
F.1 Introduction
F.2 Theory
F.3 Results
F.4 Summary and conclusions
3 Ongoing work
4 Summary and outlook
4.1 Summary
4.2 Outlook
5 Appendix
5.1 Bandstructure of graphene
5.2 Quantum transport theory and Landauer-Büttiker formula
References
List of figures
List of tables
Acknowledgement
Selbstständigkeitserklärung
Curriculum vitae
List of publications / Diese Dissertation untersucht mittels theoretischer Methoden die elektronischen Transporteigenschaften von defektbehafteten Kohlenstoffnanoröhren (englisch: carbon nanotubes, CNTs). Dabei werden Vakanzen als Defekte fokussiert behandelt. Die Berechnungen werden mittels Quantentransporttheorie und einer zugrunde liegenden dichtefunktionalbasierten Tight-Binding-Methode durchgeführt. Zwei algorithmische Verbesserungen werden hergeleitet, welche die üblichen Methoden für quasi-eindimensionale Systeme für zwei spezifische Fälle beschleunigen: (i) zufällig verteilte Defekte und (ii) lange Einheitszellen. Damit werden das Transmissionsspektrum und der Leitwert als Funktion von CNT-Länge, Durchmesser, chiralem Winkel, Defekttyp, Defektdichte, Defektanteil und Temperatur berechnet. Das Diffusions- und das Lokalisierungstransportregime werden beschrieben, indem die elastische freie Weglänge und die Lokalisierungslänge für metallische und halbleitende CNTs extrahiert werden. Einfache analytische Modelle zur Abschätzung bis hin zur Vorhersage des Leitwertes in Abhängigkeit besagter Parameter werden abgeleitet. Schlussendlich werden die Bildung einer defektinduzierten, langreichweitigen Deformation und deren Einfluss auf den Leitwert studiert.:1 Introduction
2 Fundamentals
2.1 Carbon nanotubes
2.1.1 Structure
2.1.2 Properties
2.1.3 Defects
2.1.4 Synthesis
2.1.5 Characterization
2.1.6 Applications
2.2 Electron structure theory
2.2.1 Introduction
2.2.2 Density functional theory
2.2.3 Density-functional-based tight binding
2.2.3.1 First-order expansion
2.2.3.2 Creation of the parameter set
2.2.3.3 Second-order expansion
2.2.3.4 Usage
2.3 Electron transport
2.3.1 Equilibrium Green’s-function-based quantum transport theory
2.3.2 Transport regimes
2.3.3 Classical derivation: drift-diffusion equation with a sink
2.3.4 Quantum derivation: Dorokhov-Mello-Pereyra-Kumar theory
A Improved recursive Green’s function formalism for quasi one-dimensional systems with realistic defects (J. Comput. Phys. 334 (2017), 607–619)
A.1 Introduction
A.2 Quantum transport theory
A.3 Recursive Green’s function formalisms
A.3.1 Forward iteration scheme
A.3.2 Recursive decimation scheme
A.3.3 Renormalization decimation algorithm
A.4 Improved RGF+RDA
A.5 Performance test
A.5.1 Random test matrix
A.5.2 Transport through carbon nanotubes
A.6 Summary and conclusions
B Strong localization in defective carbon nanotubes: a recursive Green’s function study (New J. Phys. 16 (2014), 123026)
B.1 Introduction
B.2 Theoretical framework
B.2.1 Transport formalism
B.2.2 Recursive Green’s function formalism
B.2.3 Electronic structure
B.2.4 Strong localization
B.3 Modeling details of the defective system
B.4 Results and discussion
B.4.1 Single defects
B.4.2 Randomly distributed defects
B.4.3 Localization exponent
B.4.4 Diameter dependence and temperature dependence of the localization exponent
B.5 Summary and conclusions
Supplementary material
C Electronic transport in metallic carbon nanotubes with mixed defects within the strong localization regime (Comput. Mater. Sci. 138 (2017), 49–57)
C.1 Introduction
C.2 Theoretical framework
C.3 Modeling details
C.4 Results and discussion
C.4.1 Conductance
C.4.2 Localization exponent
C.4.3 Influence of temperature
C.4.4 Conductance estimation
C.5 Summary and conclusions
D An improved Green’s function algorithm applied to quantum transport in carbon nanotubes (arXiv: 1806.02039)
D.1 Introduction
D.2 Electronic transport
D.3 Decimation technique and renormalization-decimation algorithm
D.4 Renormalization-decimation algorithm for electrodes with long unit cells
D.4.1 Surface Green’s functions
D.4.2 Bulk Green’s functions and electrode density of states
D.5 Complexity measure and performance test
D.6 Exemplary results
D.7 Summary and conclusions
E Electronic transport through defective semiconducting carbon nanotubes (J. Phys. Commun. 2 (2018), 105012)
E.1 Introduction
E.2 Theoretical framework
E.3 Modeling details
E.4 Results and discussion
E.4.1 Transmission and transport regimes
E.4.2 Energy dependent localization exponent and elastic mean free path
E.4.3 Conductance, effective localization exponent and effective elastic mean free path
E.5 Summary and conclusions
Supplementary material
F Influence of defect-induced deformations on electron transport in carbon nanotubes (J. Phys. Commun. 2 (2018), 115023)
F.1 Introduction
F.2 Theory
F.3 Results
F.4 Summary and conclusions
3 Ongoing work
4 Summary and outlook
4.1 Summary
4.2 Outlook
5 Appendix
5.1 Bandstructure of graphene
5.2 Quantum transport theory and Landauer-Büttiker formula
References
List of figures
List of tables
Acknowledgement
Selbstständigkeitserklärung
Curriculum vitae
List of publications
|
3 |
Electronic transport through defective semiconducting carbon nanotubesTeichert, Fabian, Zienert, Andreas, Schuster, Jörg, Schreiber, Michael 12 December 2018 (has links)
We investigate the electronic transport properties of semiconducting (m, n) carbon nanotubes (CNTs) on the mesoscopic length scale with arbitrarily distributed realistic defects. The study is done by performing quantum transport calculations based on recursive Green's function techniques and an underlying density-functional-based tight-binding model for the description of the electronic structure. Zigzag CNTs as well as chiral CNTs of different diameter are considered. Different defects are exemplarily represented by monovacancies and divacancies. We show the energy-dependent transmission and the temperature-dependent conductance as a function of the number of defects. In the limit of many defetcs, the transport is described by strong localization. Corresponding localization lengths are calculated (energy dependent and temperature dependent) and systematically compared for a large number of CNTs. It is shown, that a distinction by (m − n)mod 3 has to be drawn in order to classify CNTs with different bandgaps. Besides this, the localization length for a given defect probability per unit cell depends linearly on the CNT diameter, but not on the CNT chirality. Finally, elastic mean free paths in the diffusive regime are computed for the limit of few defects, yielding qualitatively same statements.
|
Page generated in 0.028 seconds