• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 3
  • 1
  • Tagged with
  • 16
  • 16
  • 9
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parametric Designs and Weight Optimization using Direct and Indirect Aero-structure Load Transfer Methods

Gandhi, Viraj D. 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Within the aerospace design, analysis and optimization community, there is an increasing demand to finalize the preliminary design phase of the wing as quickly as possible without losing much on accuracy. This includes rapid generation of designs, an early adaption of higher fidelity models and automation in structural analysis of the internal structure of the wing. To perform the structural analysis, the aerodynamic load can be transferred to the wing using many different methods. Generally, for preliminary analysis, indirect load transfer method is used and for detailed analysis, direct load transfer method is used. For the indirect load transfer method, load is discretized using shear-moment-torque (SMT) curve and applied to ribs of the wing. For the direct load transfer method, the load is distributed using one-way Fluid-Structure Interaction (FSI) and applied to the skin of the wing. In this research, structural analysis is performed using both methods and the nodal displacement is compared. Further, to optimize the internal structure, iterative changes are made in the number of structural members. To accommodate these changes in geometry as quickly as possible, the parametric design method is used through Engineering SketchPad (ESP). ESP can also provide attributions the geometric feature and generate multi-fidelity models consistently. ESP can generate the Nastran mesh file (.bdf) with the nodes and the elements grouped according to their geometric attributes. In this research, utilizing the attributions and consistency in multi-fidelity models an API is created between ESP and Nastran to automatize the multi-fidelity structural optimization. This API generates the design with appropriate parameters and mesh file using ESP. Through the attribution in the mesh file, the API works as a pre-processor to apply material properties, boundary condition, and optimization parameters. The API sends the mesh file to Nastran and reads the results file to iterate the number of the structural member in design. The result file is also used to transfer the nodal deformation from lower-order fidelity structural models onto the higher-order ones to have multi-fidelity optimization. Here, static structural optimization on the whole wing serves as lower fidelity model and buckling optimization on each stiffened panel serves as higher fidelity model. To further extend this idea, a parametric model of the whole aircraft is also created. / 2021-08-17
2

Weight Optimization of Radar Shelter using Design of Experiment

Jonnerby, Nils January 2018 (has links)
This master thesis covers the subject of Design of Experiment which is a method of executing experiments or simulations in designed and well planned approaches. The method has been investigated and implemented at a Radar shelter at the Giraffe A4 Radar truck developed by SAAB AB. The thesis was offered by SAAB Surveillance in Gothenburg, Sweden, during the spring of 2018. Design of Experiment was found to be a very powerful method for reducing the number of factors in a large system by executing a number of simulations and evaluating their influence on the studied response. The study of the Radar shelter was done by modelling of a surrogate model of the shelter, parameterization of it and execution of modal and static analyses with designed experiments. The factors studied were dimension of beam components and thicknesses of sheet components. Attempts were made to implement a higher parameterization of the design, involving concept variables and other design changing parameters, but without success. The most demanding and important step to consider during implementation of this method is how the factors of the studied system should be chosen. The factors should be easily adjustable and concrete to enable a parameterisation of these and performing the experiments. The most important responses of the system should be well defined along with other fundamentally important responses to guarantee a robust and reliable outcome from the experimentation. The experimenter should carefully revise the conclusions drawn from the results with respect to the defined experimental setup with boundary conditions and load cases. The results are just as good as the inputs to the experiment.
3

PARAMETRIC DESIGNS AND WEIGHT OPTIMIZATION USING DIRECT AND INDIRECT AERO-STRUCTURE LOAD TRANSFER METHODS

Viraj Dipakbhai Gandhi (7033289) 13 August 2019 (has links)
Within the aerospace design, analysis and optimization community, there is an increasing demand to finalize the preliminary design phase of the wing as quickly as possible without losing much on accuracy. This includes rapid generation of designs, an early adaption of higher fidelity models and automation in structural analysis of the internal structure of the wing. To perform the structural analysis, the aerodynamic load can be transferred to the wing using many different methods. Generally, for preliminary analysis, indirect load transfer method is used and for detailed analysis, direct load transfer method is used. For the indirect load transfer method, load is discretized using shear-moment-torque (SMT) curve and applied to ribs of the wing. For the direct load transfer method, the load is distributed using one-way Fluid-Structure Interaction (FSI) and applied to the skin of the wing. In this research, structural analysis is performed using both methods and the nodal displacement is compared. Further, to optimize the internal structure, iterative changes are made in the number of structural members. To accommodate these changes in geometry as quickly as possible, the parametric design method is used through Engineering SketchPad (ESP). ESP can also provide attributions the geometric feature and generate multi-fidelity models consistently. ESP can generate the Nastran mesh file (.bdf) with the nodes and the elements grouped according to their geometric attributes. In this research, utilizing the attributions and consistency in multi-fidelity models an API is created between ESP and Nastran to automatize the multi-fidelity structural optimization. This API generates the design with appropriate parameters and mesh file using ESP. Through the attribution in the mesh file, the API works as a pre-processor to apply material properties, boundary condition, and optimization parameters. The API sends the mesh file to Nastran and reads the results file to iterate the number of the structural member in design. The result file is also used to transfer the nodal deformation from lower-order fidelity structural models onto the higher-order ones to have multi-fidelity optimization. Here, static structural optimization on the whole wing serves as lower fidelity model and buckling optimization on each stiffened panel serves as higher fidelity model. To further extend this idea, a parametric model of the whole aircraft is also created.<br>
4

Adaptiva metoder för systemidentifiering med inriktning mot direkt viktoptimering / Adaptive Bandwidth Selection for Nonlinear System Identification with Focus on Direct Weight Optimization

Gillberg, Tony January 2010 (has links)
<p>Direkt viktoptimering (Direct Weight Optimization, DWO) är en ickeparamterisk systemidentifieringsmetod. DWO bygger på att man skattar ett funktionsvärde i en viss punkt genom en viktad summa av mätvärden, där vikterna optimeras fram. Det faktum att DWO har en inparameter som man måste veta i förväg leder till att man på något sätt vill skatta denna inparameter. Det finns många sätt man kan göra denna skattning på men det centrala i denna uppsats är att skatta inparametern lokalt. Fördelen med detta är att metoden anpassar sig om till exempel systemet ändrar beteende från att variera långsamt till att variera snabbare. Denna typ av metoder brukar kallas adaptiva metoder.Det finns flera metoder för att skatta en inparameter lokalt och anpassningen till DWO är redan klar för ett fåtal som lämpar sig bra. Det är dock inte undersökt vilken av dessa metoder som ger det bästa resultatet för just DWO. Syftet med denna uppsats är alltså att ta reda på hur man lokalt kan skatta en inparameter till DWO på bästa sätt och om DWO är en bra grund att basera en adaptiv metod på.Det har visat sig att DWO kanske är för känslig för en lokalt vald inparameter för att vara en bra grund att basera en adaptiv metod på. Däremot utmärker sig en av metoderna för att skatta inparametern genom att vara mycket bättre än de andra metoderna när den kanske inte borde vara det. Varför den är så bra kan vara ett bra ämne för vidare forskning.</p> / <p>Direct Weight Optimization (DWO) is a nonparametric system identification meth\-od. In DWO the value of a function in a certain point is estimated by a weighted sum of measured values. The weights are obtained as a solution to a convex optimization problem. DWO has a design parameter which has to be chosen or estimated a priori. There are many ways to estimate this parameter. The main focus of this thesis is to estimate this parameter locally. The advantage of estimating the parameter locally is that the estimate will adapt if the system changes behavior from slowly varying to rapidly varying. Estimation methods of this type are usually called adaptive estimation methods.There are a number of adaptive estimation methods and the adaptation of some of these methods to DWO has already been done. There are however no evaluation studies done. The goal with this thesis is therefore to find out how to estimate the parameter in DWO in the best way and to find out whether DWO is a good base for an adaptive method.It turned out that DWO might be too sensitive to local changes in the design parameter to be a good base for an adaptive method. However, one of the adaptive estimation methods stands out from the rest because it is much better than the other methods when it, perhaps, should not. Why this method is good might be a good subject for further research.</p>
5

Adaptiva metoder för systemidentifiering med inriktning mot direkt viktoptimering / Adaptive Bandwidth Selection for Nonlinear System Identification with Focus on Direct Weight Optimization

Gillberg, Tony January 2010 (has links)
Direkt viktoptimering (Direct Weight Optimization, DWO) är en ickeparamterisk systemidentifieringsmetod. DWO bygger på att man skattar ett funktionsvärde i en viss punkt genom en viktad summa av mätvärden, där vikterna optimeras fram. Det faktum att DWO har en inparameter som man måste veta i förväg leder till att man på något sätt vill skatta denna inparameter. Det finns många sätt man kan göra denna skattning på men det centrala i denna uppsats är att skatta inparametern lokalt. Fördelen med detta är att metoden anpassar sig om till exempel systemet ändrar beteende från att variera långsamt till att variera snabbare. Denna typ av metoder brukar kallas adaptiva metoder.Det finns flera metoder för att skatta en inparameter lokalt och anpassningen till DWO är redan klar för ett fåtal som lämpar sig bra. Det är dock inte undersökt vilken av dessa metoder som ger det bästa resultatet för just DWO. Syftet med denna uppsats är alltså att ta reda på hur man lokalt kan skatta en inparameter till DWO på bästa sätt och om DWO är en bra grund att basera en adaptiv metod på.Det har visat sig att DWO kanske är för känslig för en lokalt vald inparameter för att vara en bra grund att basera en adaptiv metod på. Däremot utmärker sig en av metoderna för att skatta inparametern genom att vara mycket bättre än de andra metoderna när den kanske inte borde vara det. Varför den är så bra kan vara ett bra ämne för vidare forskning. / Direct Weight Optimization (DWO) is a nonparametric system identification meth\-od. In DWO the value of a function in a certain point is estimated by a weighted sum of measured values. The weights are obtained as a solution to a convex optimization problem. DWO has a design parameter which has to be chosen or estimated a priori. There are many ways to estimate this parameter. The main focus of this thesis is to estimate this parameter locally. The advantage of estimating the parameter locally is that the estimate will adapt if the system changes behavior from slowly varying to rapidly varying. Estimation methods of this type are usually called adaptive estimation methods.There are a number of adaptive estimation methods and the adaptation of some of these methods to DWO has already been done. There are however no evaluation studies done. The goal with this thesis is therefore to find out how to estimate the parameter in DWO in the best way and to find out whether DWO is a good base for an adaptive method.It turned out that DWO might be too sensitive to local changes in the design parameter to be a good base for an adaptive method. However, one of the adaptive estimation methods stands out from the rest because it is much better than the other methods when it, perhaps, should not. Why this method is good might be a good subject for further research.
6

Cost/Weight Optimization of Aircraft Structures

Kaufmann, Markus January 2008 (has links)
<p>Composite structures can lower the weight of an airliner significantly. The increased production cost, however, requires the application of cost-effective design strategies. Hence, a comparative value is required which is used for the evaluation of a design solution in terms of cost and weight. The direct operating cost (DOC) can be used as this comparative value; it captures all costs that arise when the aircraft is flown. In this work, a cost/weight optimization framework for composite structures is proposed. It takes into account manufacturing cost, non-destructive testing cost and the lifetime fuel consumption based on the weight of the aircraft, thus using a simplified version of the DOC as the objective function.</p><p>First, the different phases in the design of an aircraft are explained. It is then focused on the advantages and drawbacks of composite structures, the design constraints and allowables, and non-destructive inspection. Further, the topics of multiobjective optimization and the combined optimization of cost and weight are addressed. Manufacturing cost can be estimated by means of different techniques; here, feature-based cost estimations and parametric cost estimations proved to be most suitable for the proposed framework. Finally, a short summary of the appended papers is given.</p><p>The first paper contains a parametric study in which a skin/stringer panel is optimized for a series of cost/weight ratios (weight penalties) and material configurations. The weight penalty, defined as the specific lifetime fuel burn, is dependent on the fuel consumption of the aircraft, the fuel price and the viewpoint of the optimizer. It is concluded that the ideal choice of the design solution is neither low-cost nor low-weight but rather a combination thereof.</p><p>The second paper proposes the inclusion of non-destructive testing cost in the design process of the component, and the adjustment of the design strength of each laminate according to the inspection parameters. Hence, the scan pitch of the ultrasonic testing is regarded as a variable, representing an index for the (guaranteed) laminate quality. It is shown that the direct operating cost can be lowered when the quality level of the laminate is assigned and adjusted in an early design stage.</p>
7

The impact on fuel costs when optimizing speed and weight in a single truck transportation system. / Påverkan på bränslekostnad vid optimering av hastighet och vikt i ett transportsystem för en lastbil.

Saxman, Tim January 2017 (has links)
Traditionally, route planning in the transportation sector has only focused on minimizing the total distance driven when transporting goods or people. This is often done using software tools since planning the optimal route is a complex task that is hard to solve by hand. While driving the shortest distance possible is an effort towards lowering fuel costs, which is one of the largest operating costs for truck transportation companies, it is not necessarily the most fuel efficient route. Recently, research has emerged regarding fuel minimizing route planning in order to perform transport operations at the lowest fuel cost possible. One factor contributing to fuel consumption is vehicle speed, since high speed means high wind resistance. Fuel can therefore be conserved by driving at lower speeds. Though lower speeds means longer travelling time, meaning that if the route is disrupted, causing a delay, there is an increased risk that all tasks cannot be performed during the started working day. The purpose of this thesis is to determine how to plan fuel efficient routes in a transportation system prone to disruptions. It was conducted at Scania to further understand how their truck customers can increase profitability in their businesses by planning fuel efficient routes. The truck transportation business is under heavy pressure with low margins. It is therefore valuable to plan fuel efficient routes. The outcome of this thesis is two linear programming models for route planning that take truck capacity, customer demand and time windows for delivery into account. The first model can be used during planning to find a fuel efficient route in order to deliver to all customers to the lowest fuel cost possible. The model gives a route with predetermined average speeds between the customers, as well as arrival time at each customer. When appropriate, the truck is proposed to drive at a slightly decreased speed, to lower wind resistance and thereby fuel consumption. By also taking load weight into account, the route can be planned such that a heavy part of the load is delivered early, reducing the weight carried for the rest of the route. The proposed model accomplishes on average 6.3 % lower fuel cost, compared to the most commonly used route planning model, where the shortest total driving distance is sought. If something would happen that disrupts the route, it might be impossible to deliver all customers before the day ends. To handle those situations, a second model is proposed. Once the transport is delayed, the model will revise the initial route and propose a new route based on a cost of delaying a delivery. The goal is then to deliver as much as possible to the lowest possible cost. The new route will still consist of predetermined average speeds and arrival times. The proposed model is a tool for handling the complex task of recalculating routes once a disruption occurs. In summary, the first model provides support to plan a route that potentially lowers the operational costs for truck transportation companies. If the planned route is disrupted, the second model will revise it and give a new route with new speeds and arrival times. If possible, the revised route will still result in making all deliveries, otherwise the model will postpone the smallest deliveries to the next day. Together, the two models serve as a valuable support for truck transport companies that want to increase their profitability by lowering their operational costs. / Traditionellt har ruttplanering inom transportsektorn endast fokuserat på att minimera den totala körsträckan vid transport av gods eller människor. Detta görs ofta med hjälp av mjukvaruverktyg, eftersom optimal ruttplanering är en komplex uppgift som är svår att lösa för hand. Att köra den kortaste totalsträckan är ett sätt att sänka bränslekostnaderna, vilket är en av de största driftskostnaderna för lastbilstransportföretag, men det är inte nödvändigtvis den mest bränsleeffektiva rutten. Den senaste tiden har allt mer forskning bedrivits inom bränsleminimering för att kunna utföra transportuppdrag till lägsta möjliga bränslekostnad. En faktor som bidrar till bränsleförbrukningen är fordonets hastighet, eftersom hög hastighet innebär högt luftmotstånd. Bränsleförbrukningen kan därför minskas genom att köra i lägre hastigheter. Även om lägre hastigheter betyder längre körtid, vilket innebär att om rutten störs och lastbilen blir försenad, finns det en ökad risk att allt inte kan levereras under den påbörjade arbetsdagen. Syftet med detta arbete är att bestämma hur bränsleeffektiva rutter kan planeras i ett transportsystem benäget för störningar. Arbetet genomfördes på Scania för att förstå hur deras lastbilskunder kan öka lönsamheten i sina företag genom att planera bränsleeffektivare rutter. Lastbilstransportbranschen är under hög press med låga marginaler. Det är därför värdefullt för Scanias lastbilskunder att planera bränsleeffektiva rutter. Arbetet resulterade i två ruteplaneringsmodeller som tar hänsyn till lastkapacitet, kundbehov och tidsfönster för leverans. Den första modellen kan användas vid planering för att hitta en bränsleeffektiv rutt så att alla kunder levereras till lägsta möjliga bränslekostnad. Modellen ger en rutt med förbestämda genomsnittshastigheter mellan kunderna, såväl som ankomsttid hos varje kund. När det anses lämpligt föreslås något minskade hastigheter, för att minska luftmotståndet och därigenom bränsleförbrukningen. Genom att även ta hänsyn till vikt, kan rutten planeras så att en tung del av lasten levereras tidigt, vilket minskar den vikt som transporteras på resterande sträckor. Den föreslagna modellen uppnår i genomsnitt 6,3% lägre bränslekostnad jämfört med den vanligaste ruteplaneringsmodellen, som ger den kortaste totala körsträckan. Om något skulle hända som stör rutten kan det vara omöjligt att leverera alla kunder innan dagen slutar. För att hantera dessa situationer föreslås en andra modell. När transporten är försenad planerar modellen om den ursprungliga rutten och föreslår en ny rutt baserat på kostnaden för att skjuta upp en leverans. Målet är då att leverera så mycket som möjligt till lägsta möjliga kostnad. Den nya rutten består fortfarande av förbestämda medelhastigheter och ankomsttider. Genom att använda den föreslagna modellen tillhandahålls ett verktyg för att hantera den komplexa uppgiften att planera om rutten vid en störning. Sammanfattningsvis ger den första modellen stöd för att planera en rutt som potentiellt sänker driftskostnaderna för lastbilstransportföretag. Om den planerade rutten utsätts för en störning, föreslår den andra modellen en ny rutt med nya hastigheter och ankomsttider. Om det är möjligt innebär den nya rutten fortfarande att lastbilen levererar till alla kunder, om inte skjuts de minsta leveranserna upp till nästa dag. Tillsammans är de två modellerna ett värdefullt stöd för lastbilstransportföretag som vill öka lönsamheten genom att sänka sina driftskostnader.
8

Cost/Weight Optimization of Aircraft Structures

Kaufmann, Markus January 2008 (has links)
Composite structures can lower the weight of an airliner significantly. The increased production cost, however, requires the application of cost-effective design strategies. Hence, a comparative value is required which is used for the evaluation of a design solution in terms of cost and weight. The direct operating cost (DOC) can be used as this comparative value; it captures all costs that arise when the aircraft is flown. In this work, a cost/weight optimization framework for composite structures is proposed. It takes into account manufacturing cost, non-destructive testing cost and the lifetime fuel consumption based on the weight of the aircraft, thus using a simplified version of the DOC as the objective function. First, the different phases in the design of an aircraft are explained. It is then focused on the advantages and drawbacks of composite structures, the design constraints and allowables, and non-destructive inspection. Further, the topics of multiobjective optimization and the combined optimization of cost and weight are addressed. Manufacturing cost can be estimated by means of different techniques; here, feature-based cost estimations and parametric cost estimations proved to be most suitable for the proposed framework. Finally, a short summary of the appended papers is given. The first paper contains a parametric study in which a skin/stringer panel is optimized for a series of cost/weight ratios (weight penalties) and material configurations. The weight penalty, defined as the specific lifetime fuel burn, is dependent on the fuel consumption of the aircraft, the fuel price and the viewpoint of the optimizer. It is concluded that the ideal choice of the design solution is neither low-cost nor low-weight but rather a combination thereof. The second paper proposes the inclusion of non-destructive testing cost in the design process of the component, and the adjustment of the design strength of each laminate according to the inspection parameters. Hence, the scan pitch of the ultrasonic testing is regarded as a variable, representing an index for the (guaranteed) laminate quality. It is shown that the direct operating cost can be lowered when the quality level of the laminate is assigned and adjusted in an early design stage. / QC 20101112
9

Weight Minimization of Sound Packages by Balancing Absorption and Transmission Performance

Hyunjun Shin (6622235) 10 June 2019 (has links)
<p>Generally, heavier noise control treatments are favored over lighter ones since heavier acoustical materials tend to insulate (block) noise sources more effectively than do lighter materials. In automotive applications, however, heavier materials cannot always be adopted because of concerns over the total weight of the vehicle. Thus, it would be useful to identify lightweight acoustical treatments that can mitigate vehicle interior noise. Automotive sound packages have both absorption and barrier characteristics, and there is inevitably a trade-off between these two. Therefore, it is important to study the exchange between the absorption and transmission of acoustical materials particularly as it pertains to weight. Here, a procedure based on plane wave analysis is described that can be used to identify weight reduction opportunities by adjusting the acoustical properties of a generic sound package, consisting of a fibrous layer and a flexible microperforated panel surface treatment, so that it meets a target sound pressure level in a downstream interior space. It has been found, for the configuration studied here, that there are lightweight sound package configurations that can maintain acoustical performance equivalent to that of heavier noise treatments, and further, it has been found that the lightest treatments tend to favor barrier performance rather than absorption. Further, the impact of acoustical leaks has been considered, and it has been found that even very small leaks can result in a very substantial weight penalty if a specified level of acoustical performance is to be ensured. Further, the impact of changing the underlying panel mass and altering the frequency weighting used in the optimization process has also been considered.</p> <p>The optimizer used in the proposed procedure requires considerable calculation time; hence, the acoustic pressure calculation time needs to be minimized to enhance the efficiency of the solution process. Thus, the transfer matrix method (TMM) for a two-dimensional case was used to calculate the interior acoustic pressure for a simple geometry as a starting point in the process of identifying the minimum-weight sound packages. The TMM is a widely used analytical approach to predicting the sound pressure (and particle velocity) for a system that can be represented as a series of subsystems. Although the TMM can offer fast and simple calculations for the acoustic system, its application is limited to a plane-wave-based model. Thus, the TMM is not the best option for the acoustic pressure prediction in a complex geometry such as a vehicle interior, that involves non-planar wave propagation. Therefore, a hybrid TMM-FEA method is proposed in this research to evaluate the acoustical performance of the sound package in more complex geometries (here, a vehicle-like cavity). So, in this research, the TMM was introduced to obtain the initial solutions that can be used in conjunction with the FEA tool to calculate the sound pressure field in the complex geometry case. The correlation between the results of these two approaches was then analyzed to develop a space-averaged pressure prediction model for various absorptive cases in the interior space. Finally, this SAP prediction model was used to generate an acoustic map that can be used to graphically estimate the SAPs in the complex geometry case.</p> <p>In order to validate the usage of the developed equation for different sets of boundary conditions, several case studies were performed to study the effects of the surface impedance arrangements, geometrical shapes, and, lastly, the presence of extra features in the interior space. Finally, the SAP difference between the area near the driver’s right ear and the total interior cavity was studied to show that the SAP of the total cavity can be adjusted to evaluate the acoustic performance of the sound packages along the lines of conventional industry practice. </p>
10

Hmotnostní optimalizace kesonu křídla letounu L 410 NG / Wing structure weight optimization of the aircraft L 410 NG

Jurek, Peter January 2013 (has links)
Presented diploma thesis deals with parametric optimization of wing caisson of L 410 NG aircraft to reduce its‘structure weight. The paper is mainly focused on description and application of optimization methods with the use of finite element methods in MSC Nastran. Moreover the thesis contains loading state check of optimized design, done in STAUNO software.

Page generated in 0.0769 seconds