• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 605
  • 168
  • 52
  • 37
  • 36
  • 15
  • 14
  • 13
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 7
  • Tagged with
  • 1163
  • 246
  • 229
  • 184
  • 177
  • 172
  • 123
  • 108
  • 74
  • 71
  • 69
  • 68
  • 67
  • 65
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

A multijurisdictional approach to predicting benefit-cost ratios for flood retention wetlands in rural Iowa

Brourman, Max E. 01 August 2019 (has links)
Rural Iowa towns often lack flood mitigation because of a lack of resources and inability to compete for federal assistance funds. The Federal Emergency Management Agency relies on a benefit-cost analysis which produces benefit-cost ratios (BCRs) for proposed projects to determine which communities receive funding, with an emphasis on the economic BCR, which compares potential future benefits with estimated capital costs. The FEMA requirement for an economic BCR is at least 0.75. The economic BCRs for mitigation projects in rural towns are often lower compared to those in urban centers due lower potential future benefits from lower building count and potential exposure. Here we use a multijurisdictional approach which analyzes flood mitigation at a watershed scale to join upstream agricultural potential future benefits with downstream potential avoided benefits in rural towns. We predicted BCRs of simulated flood retention wetlands using HAZUS-MH to find the potential future benefits a range of estimated capital costs via a percent reduction approach and a targeted peak flow approach to calculating wetland effects on peak flow. The percent reduction approach generated BCRs of over 0.75 in the Mud Creek watershed for estimated capital costs per wetland up to $177,400. However, the simulated flood retention wetlands did not generate BCRs high enough to meet the minimum requirement in the Hinkle Creek watershed by itself. However, a multijurisdictional approach is not limited to each watershed individually. When the simulated flood retention wetland projects in each watershed were combined, the BCRs were high enough to meet the FEMA requirement. The combined BCRs were over 0.75 for estimated capital costs up to $143,300. The targeted peak flow approach included BCRs which account for dry and wet antecedent soil moisture conditions and minimum, maximum and average peak flow change scenarios. The scenarios with dry antecedent soil moisture conditions created BCRs higher than wet antecedent soil moisture conditions. Further, the maximum peak change scenarios generated BCRs higher than average peak change scenarios, which in turn generated higher BCRs than the minimum peak change scenarios. In the Mud Creek watershed, the only scenario to generate BCRs above 0.75 for any part of the range of estimated capital costs was the maximum peak change scenario under dry antecedent soil moisture conditions. However, the maximum and average peak change scenarios under dry antecedent soil moisture conditions and the maximum peak change scenario under wet soil moisture conditions generated BCRs over 0.75 in the Hinkle Creek watershed. When the simulated flood retention wetland projects for both watersheds were combined, only the maximum peak change scenario under dry antecedent soil moisture conditions generated BCRs above 0.75. We found that a multijurisdictional approach is a viable method for rural watersheds to analyze potential flood mitigation projects to help increase their BCRs.
322

Geospatial analysis of invasive plant species and their threats to ecological functionality at the VCU Rice Rivers Center

Kellogg, Erik W. 01 January 2019 (has links)
Invasive plants are a significant threat to native ecosystems and to biodiversity. They are often strong competitors and have multiple techniques to outcompete native plants. Thus, controlling or removing invasive plants facilitates the restoration of native ecosystems. We used GPS technology coupled with field surveying techniques adapted from the U.S. Fish and Wildlife Service to locate and identify invasive plants present within VCU’s Rice Rivers Center. We digitally overlaid a 50-meter x 50-meter grid system over the property. In each grid cell we recorded visual estimations of invasive plant coverage sorted into modified Daubenmire cover classes and used ArcGIS for mapping and analysis. Altogether, we found 25 unique invasive plant species. 93% of the grid cells contained at least one invasive species, and one grid cell contained seven unique species. The influence of anthropogenic disturbance on invasive species distribution, analyzed by using a 50-meter wide buffer zone around each disturbance (e.g., roads, buildings, etc.), showed that the presence and coverage of invasive species was greater within disturbed areas compared to intact forest. Microstegium vimineum, Lonicera japonica, and Ligustrum sinense were most common and widely distributed within terrestrial habitats, while Murdannia keisak was most widely distributed in the restored wetland. Our results for M. vimineum were compared to a similar 2004 study: this species has since spread from 40% to 76% of the grid cells. The spatial maps we have created will be a foundation for an integrated invasive species management program at the Rice Rivers Center and will assist with management, control and restoration efforts within terrestrial and aquatic ecosystems.
323

Impacts of Cattle Grazing as a Tool to Control <i>Phragmites australis</i> in Wetlands on Nitrogen, Phosphorus, and Carbon

Duncan, Brittany L. 01 May 2019 (has links)
Phragmites australis is a plant that is causing problems in wetlands by outcompeting native plants that provide food and shelter for millions of migratory birds. Currently, managers try to control Phragmites australis by spraying herbicide, burning, and mowing, but these methods are costly, time consuming, and have low levels of success. Adding grazing as a tool to control Phragmites australis provides a cheap and low labor alternative. However, there are many concerns regarding if grazing will cause nutrient loading in our wetlands that will decrease water quality and alter beneficial functions of wetlands. To better understand the effects of grazing in wetlands, we proposed a two-year study and received funding from many organizations including the Utah Department of Fire, Forestry, and State Lands, South Davis Sewer District, and the Utah Department of Environmental Quality and Water Quality. Also, the Utah Department of Natural Resources helped tremendously in allowing access to the sites, in the actual implementation of the project, coordinating with local ranchers who allowed for their cattle to be in the study, managed their cattle during the study, and assisted with fence installation, and many volunteers from Utah dedicated hunters helped with the fence installation. We collected water, manure, soil, and leaf samples over time to analyze nutrient changes and measured changes in the plants, water levels, soil cover, and litter cover over time. We then compiled and analyzed this information to better understand how grazing impacts our wetlands. As a result, we were able to make some recommendations for future research and how best to graze in wetlands with minimal impacts according to the information we found.
324

Designing a constructed wetland to treat landfill leachate

Scott, Jennifer (Jennifer E.), University of Western Sydney, Hawkesbury, Faculty of Science and Technology January 1995 (has links)
The aim of this project was to identify a suitable solution to the problem of landfill leachate at the North Katoomba landfill site. Options were affected by a range of constraints including economics, location and the intrusion of ground water into the landfill. The initial goal was to contain and treat the leachate on site, with the eventual target to discharge into the nearest receiving waters. A constructed wetland option was devised and researched, involving identification of the major pollutants contained within the leachate, developing a concept design and estimating the likely removal efficiencies expected. Investigations identified the primary pollution parameters as microbial and nutrients. Metals were found to be low in concentration although the wetland has the capacity to deal with these pollutants should they become part of the pollution plume. A bench scale constructed wetland system was developed to give an indication of the removal efficiencies. The results suggest that a constructed wetland system would be appropriate for treating landfill leachate at the North Katoomba site. It is recommended that a constructed wetland be established in the field to determine the long term treatment prospects and the potential management problems in a practical application. / Master of Science (Hons)
325

Sediment remediation as a technique for restoring eutrophic wetlands and controlling nuisance Chironomidae

jchen1232005@yahoo.com.au, Juan Chen January 2004 (has links)
Eutrophication is a global problem affecting many inland and estuarine waters. Many wetlands on the Swan Coast Plain, in Western Australia, have undergone increasing nutrient enrichment since European settlement of the region in the 1850’s. Problems such as algal blooms and nuisance swarms of non-biting midges (Diptera; Chironomidae) are the consequence of nutrient enrichment in many of these wetlands. The restoration of these degraded wetlands, especially with respect to reducing nutrient enrichment, requires a range of comprehensive and effective techniques including catchment management, diversion or treatment of surface inputs and treatment of enriched sediments. Nitrogen and phosphorus, especially phosphorus, are not the only factors controlling algal biomass in water bodies, but they are the only elements that can be removed efficiently and economically. Internal P cycling from wetland sediments can initiate and sustain eutrophication and related algal blooms and nuisance midge problems even after external sources are diverted or reduced. The aim of this study was to identify an effective material to reduce sediment phosphorus release and thereby the phosphorus concentration of the water column. It was also important to determine the impact of the selected amendment material on phytoplankton and larval midge (chironomid) communities. A range of experiments at increasing scales, from bench-top, to microcosm to outdoor mesocosm experiments were designed to test three hypotheses: 1) Materials which have a high P sorption capacity, over a wide range of P solution concentrations, and low P release rate, are potentially suitable agents to reduce P in wetlands with enriched sediments by inactivating sediment P; 2) A reduction in the abundance of cyanobacteria caused by increasing the N:P ratio of an aquatic ecosystem results in a reduction in the density of nuisance species of Chironomidae. 3) Successful amendment of enriched sediments reduces P in the water column thereby reducing the total phytoplankton biomass and the related density of nuisance species of Chironomidae. The adsorption and desorption experiments were carried out under a range of pH values and P concentrations, with a number of materials including fly ash, red mud, precipitated calcium carbonate, crushed limestone and lime to determine the maximum adsorption capacity and affinity of these materials. A rang of P concentrations (0-1000 µg/L) simulated the P concentration of the water column in a range of wetlands of differing trophic status. Poor fits to the Langmuir equation occurred with both red mud and fly ash due to their high P content. A good fit occurred with lime, with a high P removal rate (90%-96%) over the same range. Fly ash and red mud were eliminated from further investigation due to the possibility that they might release phosphorus rather than absorb when P concentrations in surrounding environment were less than 300 µg/L or 200 µg/L respectively (concentrations which can occur in eutrophic systems). Among the three lime-based, redox-insensitive materials tested in the second mesocosm experiments, precipitated calcium carbonate (PCC) possessed the highest maximum adsorption capacity and lowest desorption rate under a range of pH values (6.2, 7.2 and 10) and P concentrations (0-12 000 µg/L), followed by crushed limestone and lime. The different maximum absorption capacities of the three materials appears to be mainly attributed to their particle size (surface area). Lime was chosen as the amendment material for further investigation because it was the only one of the three available in sufficient quantities within the timeframe of this study. Microcosm experiments showed that lime was effective in reducing sediment P release from intact sediment cores, and the ratio of TN:TP in the treatment cores increased over time compared to the control cores (in which TN: TP decreased slightly). In the first mesocosm experiment a significantly higher density of larval midges was found in the treatments than in the controls. The treatments were aimed to increase N:P ratio in the systems to reduce cyanobacteria and, subsequently, larval midge densities. However even though cyanobacteria were eliminated from the treatments, the nitrogen addition appeared to result in higher phytoplankton biomass overall, which fuelled an increase in larval midge densities. In the second mesocosm experiment, the addition of lime to enriched sediments resulted in a reduction in P in the water column. This reduction was accompanied by a reduction in total phytoplankton biomass, the absence of cyanobacteria, and a less abundant and more species - diverse chironomid fauna in the treatment mesocosms. Sediment P fractionation undertaken for both the microcosm and mesocosm experiments showed that most of the phosphorus adsorbed by lime was in the labile fraction (NH3Cl extractable P and NaOH extractable P). Phosphorus in the HCl extractable fraction was also found to be higher in the treatments due to the presence of inert mineral P in the lime than the formation of new hydroxyapatite from adsorbed P. The two mesocosm experiments suggested that larval midges were non-selective feeders, responding to total phytoplankton biomass, rather than the presence of cyanobacteria. Dissolved oxygen and predation also influenced larval midge densities. In summary, although lime appeared to be a useful material for reducing P release from enriched sediments under controlled laboratory conditions, the effect under field conditions was not as definitive. Further work is required to more fully determine the conditions under which sediment remediation may be used as a means of controlling sediment P release and associated high densities of larval chironomids.
326

The influence of secondary treated effluent on denitrification in a natural wetland

Brodrick, Stephanie J., n/a January 1985 (has links)
The influence of effluent addition on denitrification potential in the Thredbo Wetland was observed by comparing an area of the wetland receiving secondary treated effluent with another area receiving no effluent addition. Physico-chemical measurements (Eh, pH and temperature) of the soil were conducted in both sampling areas to characterise the denitrifying environment. Levels of nitrate plus nitrite and ammonium ion in the soil from 0-30cm depth were recorded on a seasonal basis to identify the role of effluent addition and vertical distribution of inorganic nitrogen species in controlling the distribution of denitrification potential in the soil. Denitrification potentials of soils and decaying plant material were evaluated by the acetylene blockage technique. This involved laboratory incubations under optimum conditions of pH, temperature, nitrate concentration, carbon supply, and diffusion. The influence of these physico-chemical factors on denitrification was also investigated. It was found that the effluent addition caused higher denitrification potential in soils and surface decaying plant material by raising soil temperature, lowering Eh, and increasing concentrations of nitrate plus nitrite and ammonium ions. The highest denitrification potential was recorded in the decaying plant material on the soil surface. The highest soil denitrification potential occurred in the 0-6cm depth segment. Carbon supply and pH had no influence on denitrification potential whilst low temperature (5ºC), and restricted diffusion limited denitrification. In terms of tertiary water treatment denitrification in Thredbo Wetland makes a significant-contribution to the removal of nitrogen year-round. However, total nitrogen removal could be increased by increasing the residence time of water in the wetland thereby encouraging greater spatial and temporal interaction between the denitrifiers and the wastewater nitrogen.
327

Mosquito habitats and predation efficiency on mosquito populations in Ginninderra Wetland, Canberra, Australia

Hoa, Vu Minh, n/a January 1993 (has links)
The ecology of mosquito populations in relation to weather conditions, emergent plants and predation in an urban wetland of Canberra was studied. Anopheles annulipes, Aedes notoscriptus, Aedes australicus, Aedes alboannulata, Culex annulirostris and Culex quinquefasciatus were found. Temperature was a major climatic factor in determining the abundance of mosquito populations in the wetland. First collections and subsequent development of mosquitoes in Ginninderra wetland are likely to depend on local weather conditions each year. The wetland proper was not a suitable habitat for mosquito breeding. Tall emergent vegetation may have obstructed oviposition and predation was also important in limiting colonization by mosquitoes. Instead, isolated temporary waterbodies which were free of predators, such as ground depressions, tyre tracks, domestic waste containers, were the most important habitats for mosquitoes adjacent to the Ginninderra wetland. Field experiments found that predation of mosquito larvae by mosquitofish Gambusia qffinis and notonectids Anisops was more efficient in sunlight than shade and this was affected by the height of emergent plants.
328

Establishment vegetation patterns in an artificial urban wetland as a basis for management

Conran, Leigh Garde. January 1991 (has links) (PDF)
Bibliography : leaves [34]-[40]
329

The effects of heavy metals on denitification in a wetland sediment..

Aigbavbiere, Ernest January 2006 (has links)
<p>Wetlands water quality is influenced by the anthopogenic activities in the catchments’ areas. Wastewaters from the urban storm, agricultural runoff and sewage treatment often end up in wetlands before flowing to rivers, lakes and the sea. A lot of pollutants are readily transported in these wastewaters, thus subjecting the wetland ecosystem into a continuous resilience. Importantly, heavy metals like Cu, Zn, and Pb etc. are constituents of such pollutants in the wastewaters.</p><p>The study has as a specific objective to investigate the effects of heavy metal Cu, Zn and Pb on denitrification, an important ecosystem process and service. In a wetland situation, denitrification is a permanent nitrogen removal process accounting for about 90% of the total nitrogen removal.</p><p>The research was carried out in the laboratory and sediment samples were taken from a constructed wetland in Linkoping. We employed acetylene inhibition technique in obtaining N2O as a product resulting from nitrate reduction. The treatments (Cu, Zn and Pb) levels were 100 mg/kg, 250 mg/kg, 500 mg/kg and 1000 mg/kg of sediment, in three replicates and a control.</p><p>Samplings of the assay were taken within 24hours. Gas chromatography was used to analyse and quantify N2O in the various samples. A linear regression analysis was carried out with Windows Excel and SPSS to compare the various treatments with the control at 95% confidence level.</p><p>The results show that there were no inhibitions of denitrification at 100 mg/kg sediment treatment level for any of the element. Inhibition of denitrification was observed at treatment levels 500 mg/kg and 1000 mg/kg of sediment. The rate of nitrate reduction was compared from the slope of the regression curve. The rate for Cu at 500 mg and 1000 mg /kg of sediment was moderately related to that of the control, Zn shows a similar trend but a higher rate in some samples, while Pb shows more inhibition.</p>
330

Water Storage Capacity and Flow Dynamics in a Papyrus Wetland, Uganda : Implications for Studies of Water Treatment Effects

Asp, Karl January 2009 (has links)
<p><!--[if !mso]> <object classid="clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D" id=ieooui></object><mce:style><! st1\:*{behavior:url(#ieooui) } --></p><p>Hydrological investigations were performed in the Lubigi papyrus wetland in suburban Kampala, Uganda, impacted by human encroachment for settlement and agriculture. The first aim was to investigate the water flow variations and the dampening effect of the wetland. A second aim was to estimate the effective wetland volume and area, and relate this to the wetland function for treatment of the suburban runoff. A study site with well defined inflows and outflows was chosen, and three transects were cut through the papyrus to be able to study the water movement beneath the floating papyrus mat. Water flow measurements showed a flow dampening effect of the wetland on peak flows after rains, and the water balance revealed that the precipitation on the wetland was only 4 % of the inflow during the study. The tracer added at the inlet was rapidly detected downstream in the canal in the middle of the wetland, indicating a strong short-circuiting effect of the human made canal. At the outlet the tracer concentration was lower than the detection limit, suggesting a good mixing in the downstream part of the wetland, which was also supported by other water quality measurements in the transects. Ammonium-N concentrations at the inflow and outflow indicated a net export of ammonium-N, but the observed flow variations suggest that intensive water sampling campaigns are necessary for a proper evaluation of the water treatment function. The calculated effective volume and area amounted to 74 and 46 %, respectively, of the theoretically estimated, with a corresponding loss in the flow dampening and water treatment function of the wetland.</p><p> </p> / Rapporten är ett resultat av ett Minor Field Study stipendium finansierad av Sida.

Page generated in 0.0615 seconds