• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 605
  • 168
  • 52
  • 37
  • 36
  • 15
  • 14
  • 13
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 7
  • Tagged with
  • 1163
  • 246
  • 229
  • 184
  • 177
  • 172
  • 123
  • 108
  • 74
  • 71
  • 69
  • 68
  • 67
  • 65
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Distribution of beaver impacted peatlands in the Rocky Mountains

2013 December 1900 (has links)
Peatlands provide a variety of ecosystem services including carbon sequestration, nutrient cycling and increased biodiversity, and are thus an important Canadian natural resource. Mountain peatlands, including those in the foothill region of the Canadian Rockies are particularly important due to their proximity to headwater streams which supply the Prairie Provinces with water. Yet, distribution of peatlands in the Canadian Rocky Mountains is unknown. There is also a lack of understanding of the form of these peatlands and the processes influencing them. The purpose of this research is to improve our understanding of Canadian mountain peatlands in terms of their abundance, distribution and subsurface form. Specific objectives are to: determine the distribution of beaver impacted wetlands in the study area; quantify the proportion of these which are peatlands; determine the impact beaver have on one hydrological variable, the area of open water and; describe the stratigraphy of peatlands with beaver at their surface. Beaver impacted wetland distribution was assessed through manual analysis of georeferenced aerial photographs. Combining these data with an existing GIS layer provided the basis of a wetland inventory of the region, allowing wetlands to be separately inventoried by physiographic location (Mountain and Foothills) and jurisdiction (Alberta Parks, Municipal Districts, Improvement Districts and First Nations Reserve). Approximately 75% of wetlands are located in the Foothills and Municipal District areas. Beaver impact is evident in 30% of the 529 wetlands inventoried, with the highest number in protected areas. Area of open water on wetlands, as assessed by manual analysis of aerial photographs, indicated that beaver impacted sites have on average approximately ten times more open surface water area than non- beaver impacted sites. In total, 81 wetlands were ground-truthed of which 77% were peat-forming wetlands or peatlands. Ground penetrating radar surveys and soil coring performed at 9 peatlands with beaver activity at their surface showed structural differences from those peatlands for which ecosystem services are described in the literature in that they are stratigraphically complex. Little is known about the factors affecting how this form develops, and this requires further study. The distribution of peatlands in the study area highlights them as important landscape units, and that in order to best manage them, further research is required into the various influences on their hydrological and ecological function.
362

The use of small ephemeral wetlands and streams by amphibians in the mixedwood forest of boreal Alberta

Okonkwo, Godwin Unknown Date
No description available.
363

the non-market valuation of wetland restoration and retention in Manitoba

Pattison, John Karl Unknown Date
No description available.
364

Wetland geomorphology and floodplain dynamics on the hydrologically variable Mfolozi River, KwaZulu-Natal, South Africa.

Garden, Suzanne. January 2008 (has links)
Wetlands in southern Africa can be considered a rarity, forming despite a regional negative water balance and a continental background of wide scale incision. These particular characteristics lead to southern African wetlands generally forming on drainage lines, where incision has been momentarily paused and water is locally abundant. The exact evolutionary history of valley bottom and floodplain wetlands is varied. However, their development follows four main themes; 1) those that evolve due to resistant lithologies outcropping on a drainage line and acting as local base levels, 2) those that occur on the coast, with current sea level preventing drainage line incision, 3) those that arise from a particular relationship with a trunk or tributary channel that blocks a drainage line with sediment, and finally, 4) those that occur in a region of dramatic loss of confinement, resulting in the formation of a wetland alluvial fan. Despite varied histories, all wetlands share a common thread, developing along a continuum from small and steep unchanneled valley bottom wetlands to large and flat floodplain wetlands. Incision in valley-bottom wetlands is controlled by a geomorphic slope threshold, whereby for a given wetland size, a particular slope may be considered stable. Wetlands exceeding the particular slope for their size are most likely already incised, or are vulnerable to incision in the near future. This thesis examines the general evolution of drainage line wetlands, followed by a detailed study of a large coastal floodplain, the Mfolozi River Floodplain, located on KwaZulu-Natal’s northern coastal plain. The Mfolozi Floodplain is one of South Africa’s largest at 19 000ha and is located just south of the world heritage site of Lake St. Lucia, with the St. Lucia and Mfolozi River mouths occasionally joining at the coast. Although once a mosaic of Cyperus papyrus and Phragmites australis permanent and seasonal wetland, approximately 60% of the floodplain has been reclaimed since the 1920’s for large-scale sugar cane cultivation. A smaller percentage is used for subsistence farming, while the remaining lower portion falls in the Greater St. Lucia Wetlands Park (which was renamed iSimangeliso Park in November 2007). The formation of the large coastal valley in which the Mfolozi Floodplain now sits was created during a period of incision during the last glacial maximum 18 000 BP when sea level was 120m below the current level. The lowered sea level resulted in regional river rejuvenation and valley down cutting. The Mfolozi River valley became deeply incised resulting in the formation of incised meanders upstream of the Lebombo Mountains. Below the mountains, less resistant lithologies of the Maputaland and Zululand Groups allowed the development of a wide coastal valley. Following the last glacial maximum, sea level rose, reaching its present level approximately 6000 BP. As sea level rose, coastal valleys were drowned and began to infill with sediments. Above the floodplain, the Mfolozi River follows a meandering course in an incised confined valley. Upon passing through the Lebombo Mountains, the valley widens considerably from 915 m to over 6 km in just 1.15 km. This rapid change from confinement to a broad floodplain setting results in a reduction of carrying capacity of the Mfolozi River, creating a node of large-scale deposition at the floodplain head in the form of an alluvial fan. Deposition in this region causes a local oversteepening of the valley’s longitudinal profile, with a gradient of 0.1%. Contrastingly, the mid- floodplain is almost flat, with a decrease in elevation of just 1 m over almost 6 km (0.02%). The lower floodplain, where gradient is completely controlled by sea level, has a steeper gradient of 0.05%. The reason for the rather drastic slope break in the mid floodplain is currently unknown, although it may be related to faulting in the underlying Tertiary aged Zululand Group, which is currently concealed by Quaternary deposits. In addition, tributary drainage lines that once flowed into the Mfolozi River have been blocked by long-term sediment accumulation on the floodplain. As a result, these drainage lines have become drowned and provide local conditions for the formation and accumulation of peat. Besides geological setting, hydrology is commonly recognized as being the other most important factor in valley evolution. Flow in the Mfolozi River has been characterized as highly variable relative to the rest of the globe. The Black Mfolozi has the lowest Coefficient of Variation (CV) at 61%, followed by the White Mfolozi at 69% and the Mfolozi River at 79%. In addition, catchment precipitation was shown to be variable, especially when compared to global values. As a result of variable rainfall and discharge, the Mfolozi River shows hysteresis in sediment concentration on an annual scale, and there is an indication that hysteresis may also occur on a longer time scale during wet and dry rainfall cycles. This however, needs to be confirmed with a longerterm data set. Variable discharge and sediment transport leads to different floodplain processes and dynamics than would be expected for a river of regular flow. Since flow is generally very low in the Mfolozi River, and is characterised by a series of extremely large outlier flood events, the persistence of flood features is likely to be large. In addition, it is likely that extreme flood events are the primary drivers of floodplain evolution and dynamics in such variable settings. The Mfolozi Floodplain wetland study throws light on floodplain process rates, and the forces behind floodplain dynamics in such hydrologically variable settings. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2008.
365

Causes of wetland erosion at Craigieburn, Mpumalanga Province, South Africa.

Ngetar, Njoya Silas. 10 October 2013 (has links)
Wetland degradation, which includes deterioration in functional performance and erosion, is a problem around the world. This has engendered a quest for causes and attempts to prevent the problem or to rehabilitate wetlands already degraded or undergoing degradation. The Craigieburn wetland system in Mpumalanga Province, South Africa has undergone erosion due to two downstream discontinuous gullies that have drained and considerably reduced the size of the wetland system. Measurements from 1954 to 1997 aerial photographs showed that over 40 years, the upper gully migrated headward over a distance of 30 m, while the lower gully eroded 522 m headward raising the question as to what caused their erosion? Prior to this study, the predominant view was that human activities, namely poor land use management within the wetland system, increased human occupation, and overgrazing on the adjacent catchment that caused a reduction in vegetation cover, were responsible for this wetland erosion. Detailed field observation, aerial photograph interpretation, soil analyses for mineralogy, chemistry and particle size distribution, landscape mapping, dumpy level survey of the wetland valley and statistical analysis were undertaken to establish the relationships between gullying and possible contributing factors. Human impacts on wetland gully development between 1954 and 1997 were estimated using the number of individual homes, and total lengths of footpaths, animal tracks and dirt roads. Agricultural activities and the stocking rate of livestock were excluded due to the poor quality of aerial photographs and lack of historical records. Results of multiple regression correlating lengths of the two gullies (upper and lower gullies) and the sum of these human factors gave a high correlation (adjusted R² = 0.92 and 0.90, respectively) but a low significance (p = 0.18 and 0.21, respectively). However, time has played a significant role in the erosion of both the upper gully (R² = 0.82, p = 0.02) and the lower gully (R² = 0.98, p = 0.02) at Craigieburn. X-ray diffraction and X-ray fluorescence spectrometry of weathered parent materials showed that the area has undergone deep weathering, supplying sediments to the wetland valley through surface run-off. The accumulation of these sediments resulted in localized over-steepening of certain sections of the valley floor with raised gradients of 0.0336 and 0.0337 at the two headcuts relative to the upper and lower non-eroding sections with lower gradients. These localized steep sections increased flow velocity and stream power and therefore stream erosivity thus triggering gully erosion. In addition to localized areas of raised valley floor, results from multiple regression showed a significant relationship (p = 0.002) between areas of earthflow scars and gully length, especially at the lower gully, thus further suggesting that physical factors are largely responsible for gully erosion at Craigieburn. Long-term climate change has resulted in the formation of two terraces, an older, D1 (USU-760, 1.67 ± 0.89 ka) and a younger, D2 (USU 761, 0.32 ± 0.08 ka). The former probably eroded during the medieval warming around 1230 AD while the younger terrace, which likely formed during the last half of the Little Ice Age, has been eroding since the renewed warming thereafter. This erosion has been exacerbated by short-term periodic or seasonal climatic changes, especially episodic summer rainfall events, which have likely played a key role in the headward migration of the two gullies. The result has been shrinkage of the wetland system by about 15 m on both sides of the valley, leaving behind a greyish soil colour indicating wet and reducing conditions in the past. These, together with dried relict mottles left behind in the soil matrix at the margin of the shrunken wetland system suggest past seasonal fluctuation of the water table engendering the belief that the wetland system once extended beyond its present limit. The overwhelming contribution of these physical factors, in addition to the fact that the two gullies predate human occupation of the study area catchment and environs, strongly argues for their responsibility in gully initiation and development at Craigieburn. Human presence and activities, which only became evident in the catchment from the 1950s onwards, may be secondary contributory factors. This conclusion encourages a rethink of previous views that human occupation and activities are solely responsible for this wetland gully erosion at Craigieburn and provides a rationale for including physical processes and climate change as factors when investigating causes of wetland erosion elsewhere. Such an understanding should be used to inform any rehabilitation or conservation efforts that are related to wetland ecosystems. / Thesis (Ph.D.)-University of KwaZulu-Natal, Westville, 2011.
366

Towards an architecture that facilitates research and education in a World Heritage Site : an environmental research facility for the iSimangaliso Wetland Park.

Bellingan, Mark Lloyd. January 2008 (has links)
The purpose of this research document was to determine a relevant, responsible and appropriate architecture for the design of an Environmental Research Facility for the iSimangaliso Wetland Park World Heritage Site in Northern KwaZulu Natal, South Africa. The nature of this architecture was generated through the investigation of current literature, case and precedent studies and personally conducted interviews with a number of informed professionals. The reason for these recommendations was ultimately the design of the facility for research and education, the goal was always the eventual application of the findings into a design. Ultimately, an appropriate architecture for an Environmental Research Facility for iSimangaliso Wetland Park, a UNESCO World Heritage Site, is one which is accountable and responsible regarding the social, economic and environmental aspects of its design. These three rubrics of sustainability were then unpacked and investigated in order to clarify how this would be most effectively be achieved in the eventual design. / Thesis (M.Arch)-University of KwaZulu-Natal, Durban, 2008.
367

Constructed wetlands as an appropriate treatment of landfill leachate.

Bricken, Elizabeth Colomb. January 2003 (has links)
One of the main environmental problems associated with the disposal of waste on land is the release of liquid emissions from the site. This wastewater, known as leachate, is a product of the biodecomposition of the waste and filtrates from the landfill once the moisture saturation of the fill has been reached. The chemical composition of leachate is variable over time and between sites. Regardless of these variables, the main pollutants of concern in the leachate are ammonia and organics, both of which can cause environmental degradation in relatively low concentrations. Worldwide and in South Africa, leachate has either been directly released into the environment or into the local domestic sewage system. As more has been learned about the human and environmental health risks associated with these disposal methods, there has been a new focus in waste management toward treating the leachate at the source as part of the broader focus of sustainable landfilling. One of the treatment options being used is constructed wetlands (CW) due to the physical and chemical transformation mechanisms in these biological systems. This treatment process has been demonstrated to be effective as a final polishing treatment for leachate, and it is considered a technology appropriate in the South African context. Therefore the aim of dissertation is to ascertain the use of constructed wetlands as an appropriate treatment option for untreated methanogenic landfill leachate by determining the efficiency of ammonia and organic removal in a pilot-scale vegetated submerged bed (VSB) constructed wetland (CW) planted with Phragmites australis. During the 22-week treatability trial the VSB achieved an ammonia concentration removal efficiency of 91% and mass removal efficiency of 87%. Despite this substantial reduction of ammonia, the VSB was unable to achieve the required discharge standard. There were erratic fluctuations in both the treatment efficiencies for COD and BOO, and the results show no evidence of constant reduction of organics during the treatability trials. This is due to the refractory nature and the low biodegradability of the organics that remain in methanogenic leachate as suggested by the low BOO to COD ratio. Due to the low biodegradability of the organics, a biological treatment system, such as a VSB, will not be able to reliably meet the required discharge standards. Other passive treatment options or a combination of systems need to be explored in order to both satisfy legislative requirements and be appropriate in the South African context. / Thesis (M.Sc.)-University of Natal, Durban, 2003.
368

Effects of water level management on water chemistry and primary production of boreal marshes in northern Manitoba, Canada

Watchorn, Kristen Elise 31 January 2011 (has links)
This experiment manipulated water levels in boreal marshes within the Saskatchewan River Delta, a 9500 km2 region in northern Canada. Water levels in three wetland cells were lowered in a partial drawdown by a mean of 0.32 m. Water clarity, nutrient concentrations, and periphyton nutrient limitation were measured over the summer preceding and the summer following manipulation. The water levels of three adjacent control wetlands were not manipulated. Lowering wetland water levels reduced the wind velocity necessary to resuspend bottom sediments, which led to increases in turbidity, dissolved organic carbon, and concentrations of organic and inorganic nitrogen and phosphorus. Prior to drawdown, wetland periphyton communities were limited by nitrogen or co-limited by nitrogen and phosphorus. The input of nutrients from the sediment resulted in a shift from nutrient deficiency to nutrient sufficiency. Periphyton and phytoplankton production increased in response to the nutrient input. Increased turbidity, nutrient concentrations, and algal production were correlated with depth, rather than being inherent to the drawdown condition. Other water level manipulation studies have found that a reflood after a period of total drawdown caused a pulse of nutrients leaching from decomposing litter. This work suggests that these changes may not require complete drying out of sediments, or the input of large amounts of litter from drowned annual mudflat species, but rather can occur when depths are shallow enough that sediments are more frequently resuspended by wind. These findings have implications for future management of these marshes for waterfowl and muskrat production.
369

The surface waters of Winnipeg: rivers, streams, ponds and wetlands 1874-1984: the cyclical history of urban land drainage

Graham, Robert Michael W. 02 March 2012 (has links)
ABSTRACT The modern day City of Winnipeg is situated on the poorly drained floor of pro-glacial Lake Agassiz, one of the flattest regions on earth. Within the area now bounded by the Perimeter Highway sixteen major streams and at least twenty small coulees once emptied into the Àssiniboine and Red Rivers. Behind the levees of these rivers large areas of marsh existed providing detention storage of surface waters. The overflow from these wetlands fed many of the streams. The first settlers in the region mimicked the natural drainage regime by damming the waters of the streams to drive grist mills. Later agricultural settlers, occupying the uninhabited but marginally drained lands behind the levees began to drain the wetlands. During the explosive growth period of the City (1880-1910) the drainage regime was radically altered and an expensive and inadequate conduit system was substituted in it's place. Serious flooding episodes have occurred from the first alterations up to the present day. In an attempt to solve the flooding problems, overcome the expense of conduit systems and add amenity, a series of stormwater retention ponds was introduced by private developers in 1965. Functually these impoundments imitate the original hydraulic relationship between the ponds, wetlands and streams of the native landscape. Approximately on hundred years after the elimination of the natural drainage regime, Plan Winnipeg 1981 calls for the preservation of all natural watercourses in recognition of their high value for storm drainage and recreational amenity. Of the original thirty-six streams and coulees only nine exist today. All wetland storage areas have been eliminated. This practicum traces the historical progression of land drainage in the City of Winnipeg, summarizes the design criteria for future urban stormwater management, and outlines the present condition and rehabilitation of the historic water features.
370

Establishing a process for a wetland vegetation rehabilitation and management program focused on reed canarygrass: A Parkland Mews case study

Officer, Rob 19 September 2012 (has links)
Wetland value is threatened by invasive plant species such as Reed Canarygrass (Phalaris arundinacea). Hence the research objectives of this project were to determine if reed canarygrass abundance has an effect on plant species diversity and assess the effectiveness of novel treatments on reed canarygrass control in a constructed wetland. Four treatments (mowing, herbicide, mowing plus herbicide, and a control) followed by broadcast seeding were applied to regulate growth of reed canarygrass. Principal components analysis, biodiversity measures, and ANOVA were used to identify community composition, quantify biodiversity values and identify treatment differences respectively. Results indicated differences in species composition between east and west blocks of the study site, reed canarygrass abundance appears to keep plant species diversity low, indigenous species were rare, and reed canarygrass was resistant to treatments.The results of this study are not surprising considering there is little evidence that treatments for reed canarygrass control are effective.

Page generated in 0.0662 seconds