• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Weathering potential of wetting and drying of sandstone and basalt : a laboratory isolation study

Loubser, M.J. (Michael John) 05 November 2010 (has links)
The cyclic wetting and drying of a rock is considered to be one of a number of physical weathering processes that have an effect on the weathering of rock. While the presence of moisture is known to be of critical importance for the activation and enhancement of a number of other known weathering processes, such as cryogenic weathering, salt weathering and slaking it is possible that the mere cyclic application and removal of moisture over time may also have an effect on the physical structure of a rock. The precise nature of the process is not well understood, however. This document begins by investigating the studies that have previously been undertaken to determine how the wetting and drying weathering process is defined and to ascertain the current state of knowledge regarding this process. After an establishment of background context, a physical experiment is carried out on Clarens Formation sandstone and Marion Island basalt to note the relationship between cyclic wetting and drying and the changing physical properties of the rocks. The rocks were subjected to 105 wetting and drying cycles over a period of 21 weeks. At the beginning of the experiment, physical rock properties were measured by way of the method laid out by Cooke (1979) and again at the end of the experiment. Since the experiment was carried out under static environmental conditions, the comparison of physical rock properties gives a good indication of how the rocks have altered their structure over the experimental time period. The results obtained in this experiment show that different rock types will change in different ways when exposed to a common weathering process. The basalt samples experienced no mass loss at, while the sandstones did. The sandstones, which are rocks that are of common lithology and of very similar physical and chemical structure reacted to the wetting and drying weathering process in ways that could not be predicted without experimentation. The data does show a clear causal link between the application of external stimuli and rock property change, however. Changes in physical rock properties are not always straightforward and linear, but evolve dynamically over time, often yielding results that appear to oppose those intuitively predicted. A number of questions are asked regarding the philosophical approach that is taken to process isolation studies, with emphasis given to the careful consideration of the place that such studies have in the realm of process geomorphology. While process isolation studies may give an excellent indication of what a particular weathering process may be capable of under certain conditions and on certain rock types, they should not be regarded as indicative of what is occurring in the field. Additionally, it has become clear that it is not possible to predict how a specific rock type may respond to a specific weathering process without physical experimentation since the number of variables present in a typical weathering system are simply too vast to easily categorise. / Dissertation (MSc)--University of Pretoria, 2010. / Geography, Geoinformatics and Meteorology / MSc / Unrestricted
2

Weather-driven clay cut slope behaviour in a changing climate

Postill, Harry E. January 2018 (has links)
Long linear earthwork assets constructed in high-plasticity overconsolidated clay are known to be deteriorating due to long-term effects of wetting and drying stress cycles as a result of seasonal weather patterns. These stress cycles can lead to shallow first-time failures due to the mobilisation of post-peak strength and progressive failure. Design requirements of new earthworks and management of existing assets requires improved understanding of this critical mechanism; seasonal ratcheting. Incremental model development and validation to allow investigation of multiple inter-related strength deterioration mechanisms of cut slope behaviour in high-plasticity overconsolidated clay slopes has been presented. Initially, the mechanism of seasonal ratcheting has been considered independently and a numerical modelling approach considering unsaturated behaviour has been validated against physical modelling data. Using the validated model, the effects of slope geometry, design parameter selection and design life have been considered. Following this, an approach to allow undrained unloading of soil, stress relief, excess pore water pressure dissipation, seasonal ratcheting and progressive failure with wetting and drying boundary conditions has been considered. Hydrogeological property deterioration and the potential implications of climate change have been explored using the model. In both cases the serviceable life of cut slopes is shown to reduce significantly in the numerical analyses. Finally, a model capable of capturing hydrogeological behaviour of a real cut slope in London Clay has been developed and validated against long-term field monitored data. Using the validated model, a climate change impact assessment for the case study slope has been performed. The numerical analyses performed have indicated that seasonal ratcheting can explain shallow first-time failures in high-plasticity overconsolidated clay slopes and that the rate of deterioration of such assets will accelerate if current climate change projections are representative of future weather.
3

Finite Element Modelling in a Coastal and Marine Environment

Nielsen, Christopher Unknown Date (has links)
This thesis documents the work undertaken to investigate and improve the theoretical and practical requirements for two-dimensional hydrodynamic modelling of coastal and estuarine areas, in particular to the inter-related aspects of: - wetting and drying of relatively large intertidal areas, and - the influences of waves on both current generation and variations in mean water level. The work outlined in this thesis began as a result of a perceived lack of understanding and confidence in the application of finite element models to coastal and estuarine situations. In response to this observation an investigation into the modelling parameters, particularly those that affect model performance during the simulation of wetting and drying, was undertaken. This initial investigation into the effect of these parameters upon model performance forms the first component of this study. Testing was performed to provide a quantitative assessment of the effect of these parameters upon model performance. The initial tests were simple examples designed to investigate the behaviour of a single specific parameter. Subsequent tests were more complex and assessed the combinations of various parameter selections. Once the model was shown to accurately simulate the movement of waters in a coastal and estuarine environment, wave forces were incorporated. The aim of the second component of the study was to modify the hydrodynamic model to predict the net current and water levels attributable to the influences of waves. Tests examined the effects of the application of wave induced forces in a range of applications, including the simple case of a uniform beach, comparisons to a physical model, and an example from a real coastline. The final outcome of this study is the development of a modelling tool that can accurately represent the forces of tides, winds and waves upon water movement in a shallow coastal and/or estuarine region. Furthermore, the qualitative and quantitative assessments of parameters that affect the performance of the model provide greater confidence in model results and better understanding of the applicability and limits of the modelling technique. Principal outcomes of the study are: - an improved understanding of the parameters which influence the behaviour of hydrodynamic models; - a better understanding of the applicability and limits of the modelling technique; and - an enhanced software system based on an existing modelling software system which is applicable to studies that require simulation of the combined forces of tides, winds and waves.
4

Study on ponding water management by intermittent irrigation to reduce methane emission from paddy fields / 水田からのメタン放出削減のための間断灌漑による湛水管理に関する研究

Matsuda, Soken 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第23960号 / 農博第2509号 / 新制||農||1092(附属図書館) / 学位論文||R4||N5395(農学部図書室) / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 中村 公人, 教授 星野 敏, 教授 藤原 正幸 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
5

Volume Change Behavior of Expansive Soils due to Wetting and Drying Cycles

January 2013 (has links)
abstract: In a laboratory setting, the soil volume change behavior is best represented by using various testing standards on undisturbed or remolded samples. Whenever possible, it is most precise to use undisturbed samples to assess the volume change behavior but in the absence of undisturbed specimens, remodeled samples can be used. If that is the case, the soil is compacted to in-situ density and water content (or matric suction), which should best represent the expansive profile in question. It is standard practice to subject the specimen to a wetting process at a particular net normal stress. Even though currently accepted laboratory testing standard procedures provide insight on how the profile conditions changes with time, these procedures do not assess the long term effects on the soil due to climatic changes. In this experimental study, an assessment and quantification of the effect of multiple wetting/drying cycles on the volume change behavior of two different naturally occurring soils was performed. The changes in wetting and drying cycles were extreme when comparing the swings in matric suction. During the drying cycle, the expansive soil was subjected to extreme conditions, which decreased the moisture content less than the shrinkage limit. Nevertheless, both soils were remolded at five different compacted conditions and loaded to five different net normal stresses. Each sample was subjected to six wetting and drying cycles. During the assessment, it was evident from the results that the swell/collapse strain is highly non-linear at low stress levels. The strain-net normal stress relationship cannot be defined by one single function without transforming the data. Therefore, the dataset needs to be fitted to a bi-modal logarithmic function or to a logarithmic transformation of net normal stress in order to use a third order polynomial fit. It was also determined that the moisture content changes with time are best fit by non-linear functions. For the drying cycle, the radial strain was determined to have a constant rate of change with respect to the axial strain. However, for the wetting cycle, there was not enough radial strain data to develop correlations and therefore, an assumption was made based on 55 different test measurements/observations, for the wetting cycles. In general, it was observed that after each subsequent cycle, higher swelling was exhibited for lower net normal stress values; while higher collapse potential was observed for higher net normal stress values, once the net normal stress was less than/greater than a threshold net normal stress value. Furthermore, the swelling pressure underwent a reduction in all cases. Particularly, the Anthem soil exhibited a reduction in swelling pressure by at least 20 percent after the first wetting/drying cycle; while Colorado soil exhibited a reduction of 50 percent. After about the fourth cycle, the swelling pressure seemed to stabilized to an equilibrium value at which a reduction of 46 percent was observed for the Anthem soil and 68 percent reduction for the Colorado soil. The impact of the initial compacted conditions on heave characteristics was studied. Results indicated that materials compacted at higher densities exhibited greater swell potential. When comparing specimens compacted at the same density but at different moisture content (matric suction), it was observed that specimens compacted at higher suction would exhibit higher swelling potential, when subjected to the same net normal stress. The least amount of swelling strain was observed on specimens compacted at the lowest dry density and the lowest matric suction (higher water content). The results from the laboratory testing were used to develop ultimate heave profiles for both soils. This analysis showed that even though the swell pressure for each soil decreased with cycles, the amount of heave would increase or decrease depending upon the initial compaction condition. When the specimen was compacted at 110% of optimum moisture content and 90% of maximum dry density, it resulted in an ultimate heave reduction of 92 percent for Anthem and 685 percent for Colorado soil. On the other hand, when the soils were compacted at 90% optimum moisture content and 100% of the maximum dry density, Anthem specimens heave 78% more and Colorado specimens heave was reduced by 69%. Based on the results obtained, it is evident that the current methods to estimate heave and swelling pressure do not consider the effect of wetting/drying cycles; and seem to fail capturing the free swell potential of the soil. Recommendations for improvement current methods of practice are provided. / Dissertation/Thesis / Ph.D. Civil and Environmental Engineering 2013
6

Resiliência física de solos sob plantio direto / Physical resilience of soil under no-tillage

Bavoso, Marina Araujo 27 June 2012 (has links)
A resiliência física de solos é proveniente de processos regenerativos que incluem ciclos de umedecimento e secamento, congelamento e descongelamento assim como as atividades biológicas. Este estudo testou a hipótese de que as propriedades físicas do solo,tais como a permeabilidade do solo ao ar, densidade do solo, porosidade de aeração e porosidade total são indicadores físicos eficientes para quantificar a resiliência de solos de diferentes texturas submetidos ao estresse mecânico (compactação) e após subseqüentes ciclos de umedecimento e secamento. O objetivo foi avaliar o comportamento e a resiliência do solo por meio de propriedades físicas de um Latossolo Vermelho. Foram retiradas 25 amostras indeformadas (0-0,05m) de dois solos: solo I com textura argilosa e solo II com textura franco argilo arenosa, realizando as determinações das propriedades físicas nos tratamentos: antes da compactação(A), depois da compactação (C0) e após ciclos de umedecimento e secamento (C1,C2,C3,C4). As propriedades densidade do solo e porosidade total não apresentaram recuperação da condição inicial após a compactação nos solos I e II, as propriedades conteúdo volumétrico de água e porosidade de aeração apresentaram recuperação parcial apenas no solo I, para o solo II também não apresentaram recuperação, e a permeabilidade do solo ao ar foi a propriedade que apresentou a melhor recuperação assim como foi a que apresentou maior resiliência. Em relação ao distinto comportamento dos dois solos, observou-se que o solo I foi mais resiliente que o solo II nas propriedades que apresentaram recuperação. / The soil physical resilience comes from regenerative processes which include cycles of wetting and drying, freezing and thawing as well as biological activities. This study tested the hypothesis that the physical properties of soil such as soil permeability, bulk density, aeration porosity and total porosity are efficient physical indicators to quantify the resilience of soils of different textures subjected to mechanical stress (compression) and after subsequent cycles of wetting and drying. The objective was to evaluate the behavior and soil resilience by means of physical properties of an Oxisol. Undisturbed samples were taken 25 (0-0.05 m) of two soils: clayey soil and soil with sandy clay loam texture, making determinations of physical properties in the treatments before compression (A), after compaction (C0) and after wetting and drying cycles (C1, C2, C3, C4). The bulk density properties and porosity did not recover the initial condition after compression in the soil I and II, the properties volumetric content of water and air-filled porosity showed only partial recovery in the soil I, II to the soil also showed no recovery and soil permeability to air was the property that showed the best recovery as well as showed the greatest resilience. Regarding the different behavior of the two soil, it was observed that the soil I was more resilient soil II in which showed recovery properties
7

Resiliência física de solos sob plantio direto / Physical resilience of soil under no-tillage

Marina Araujo Bavoso 27 June 2012 (has links)
A resiliência física de solos é proveniente de processos regenerativos que incluem ciclos de umedecimento e secamento, congelamento e descongelamento assim como as atividades biológicas. Este estudo testou a hipótese de que as propriedades físicas do solo,tais como a permeabilidade do solo ao ar, densidade do solo, porosidade de aeração e porosidade total são indicadores físicos eficientes para quantificar a resiliência de solos de diferentes texturas submetidos ao estresse mecânico (compactação) e após subseqüentes ciclos de umedecimento e secamento. O objetivo foi avaliar o comportamento e a resiliência do solo por meio de propriedades físicas de um Latossolo Vermelho. Foram retiradas 25 amostras indeformadas (0-0,05m) de dois solos: solo I com textura argilosa e solo II com textura franco argilo arenosa, realizando as determinações das propriedades físicas nos tratamentos: antes da compactação(A), depois da compactação (C0) e após ciclos de umedecimento e secamento (C1,C2,C3,C4). As propriedades densidade do solo e porosidade total não apresentaram recuperação da condição inicial após a compactação nos solos I e II, as propriedades conteúdo volumétrico de água e porosidade de aeração apresentaram recuperação parcial apenas no solo I, para o solo II também não apresentaram recuperação, e a permeabilidade do solo ao ar foi a propriedade que apresentou a melhor recuperação assim como foi a que apresentou maior resiliência. Em relação ao distinto comportamento dos dois solos, observou-se que o solo I foi mais resiliente que o solo II nas propriedades que apresentaram recuperação. / The soil physical resilience comes from regenerative processes which include cycles of wetting and drying, freezing and thawing as well as biological activities. This study tested the hypothesis that the physical properties of soil such as soil permeability, bulk density, aeration porosity and total porosity are efficient physical indicators to quantify the resilience of soils of different textures subjected to mechanical stress (compression) and after subsequent cycles of wetting and drying. The objective was to evaluate the behavior and soil resilience by means of physical properties of an Oxisol. Undisturbed samples were taken 25 (0-0.05 m) of two soils: clayey soil and soil with sandy clay loam texture, making determinations of physical properties in the treatments before compression (A), after compaction (C0) and after wetting and drying cycles (C1, C2, C3, C4). The bulk density properties and porosity did not recover the initial condition after compression in the soil I and II, the properties volumetric content of water and air-filled porosity showed only partial recovery in the soil I, II to the soil also showed no recovery and soil permeability to air was the property that showed the best recovery as well as showed the greatest resilience. Regarding the different behavior of the two soil, it was observed that the soil I was more resilient soil II in which showed recovery properties
8

Nouveaux schémas de convection pour les écoulements à surface libre / New advection schemes for free surface flows

Pavan, Sara 15 February 2016 (has links)
Cette thèse a pour objectif la construction de schémas d’ordre élevé et peu diffusifs pour le transport d’un scalaire dans les écoulements à surface libre, en deux ou trois dimensions. On souhaite en particulier obtenir des schémas robustes, qui gardent au niveau discret les propriétés mathématiques de l’équation de transport avec une faible diffusion numérique, et les utiliser sur des cas industriels. Dans ce travail deux méthodes numériques sont envisagées : une méthode aux volumes finis (VF) et une méthode aux résidus distribués (RD). Dans les deux cas, l’équation de transport est résolue avec une approche découplée, qui est la solution la plus avantageuse en termes de précision et de coûts de calcul. Pour ce qui concerne la méthode aux volumes finis, les équations de Saint-Venant couplées à l’équation du transport sont d’abord résolues avec un schéma dit vertex-centred où le flux numérique est approximé avec un solveur de Riemann appelé Harten-Lax-Van Leer-Contact [135]. A partir de cette approche, une formulation découplée est proposée. Cette dernière permet de résoudre l’équation du transport avec un pas de temps plus grand que celui de la formulation couplée. Cette idée a été d’abord proposée pour d’autres schémas dans [13]. Pour augmenter l’ordre de précision en espace, la technique MUSCL [89] est utilisée en combinaison avec l’approche découplée. Finalement, la problématique des zones sèches est abordée. Dans le cas de la méthode aux résidus distribués, les équations de Saint-Venant sont résolues avec une méthode éléments finis, et la méthode RD est utilisée seulement pour discrétiser l’équation du transport, en focalisant l’attention sur les problèmes non stationnaires. L’équation de continuité du fluide discrétisée est employée pour garantir la conservation de la masse et le principe du maximum. Pour obtenir des schémas d’ordre deux dans les problèmes non stationnaires, un schéma prédicteur-correcteur [112] est utilisé, en l’adaptant au cas de concentration moyennée sur la verticale. Une version d’ordre 1 mais peu diffusive, est aussi présentée dans ce travail. De plus, un schéma localement implicite, complètement nouveau, est aussi formulé pour pouvoir traiter le problème des bancs découvrant. Les deux techniques sont validées d’abord sur des cas simples, pour évaluer l’ordre de précision des schémas et ensuite sur des cas plus complexes pour vérifier aussi les autres propriétés numériques. Les résultats montrent que les nouveaux schémas sont à la fois précis et conservatifs, tout en gardant la monotonie comme le prévoient les démonstrations. Un cas d’application industriel est aussi présenté en conclusion. Le schéma prédicteur-correcteur RD est adapté aussi au cas 3D, sans aucun problème théorique nouveau, par rapport au cas 2D. Les propriétés de base des schémas sont validées sur des cas test préliminaires / The purpose of this thesis is to build higher order and less diffusive schemes for pollutant transport in shallow water flows or 3D free surface flows. We want robust schemes which respect the main mathematical properties of the advection equation with relatively low numerical diffusion and apply them to environmental industrial applications. Two techniques are tested in this work: a classical finite volume method and a residual distribution technique combined with a finite element method. For both methods we propose a decoupled approach since it is the most advantageous in terms of accuracy and CPU time. Concerning the first technique, a vertex-centred finite volume method is used to solve the augmented shallow water system where the numerical flux is computed through an Harten-Lax-Van Leer-Contact Riemannsolver [135]. Starting from this solution, a decoupled approach is formulated and is preferred since it allows to compute with a larger time step the advection of a tracer. This idea was inspired by [13]. The Monotonic Upwind Scheme for Conservation Law [89], combined with the decoupled approach, is then used for the second order extension in space. The wetting and drying problem is also analysed and a possible solution is presented. In the second case, the shallow water system is entirely solved using the finite element technique and the residual distribution method is applied to the solution of the tracer equation, focusing on the case of time-dependent problems. However, for consistency reasons the resolution of the continuity equation must be considered in the numerical discretization of the tracer. In order to get second order schemes for unsteady cases a predictor-corrector scheme [112] is used in this work. A first order but less diffusive version of the predictor-corrector scheme is also introduced. Moreover, we also present a new locally semi-implicit version of the residual distribution method which, in addition to good properties in terms of accuracy and stability, has the advantage to cope with dry zones. The two methods are first validated on academical test cases with analytical solution in order to assess the order of the schemes. Then more complex cases are addressed to test the robustness of the schemes and their performance under different flow conditions. Finally a real test case for which real data are available is carried out. An extension of the predictor-corrector residual distribution schemes to the 3D case is presented as final contribution. Even in this case the RD technique is completely compatible with the finite element framework used for the Navier-Stokes equations, thus its extension to the 3D case does not present any extra theoretical problem. The method is tested on preliminary cases
9

Incorporating Remotely Sensed Data into Coastal Hydrodynamic Models: Parameterization of Surface Roughness and Spatio-Temporal Validation of Inundation Area

Medeiros, Stephen Conroy 01 January 2012 (has links)
This dissertation investigates the use of remotely sensed data in coastal tide and inundation models, specifically how these data could be more effectively integrated into model construction and performance assessment techniques. It includes a review of numerical wetting and drying algorithms, a method for constructing a seamless digital terrain model including the handling of tidal datums, an investigation into the accuracy of land use / land cover (LULC) based surface roughness parameterization schemes, an application of a cutting edge remotely sensed inundation detection method to assess the performance of a tidal model, and a preliminary investigation into using 3-dimensional airborne laser scanning data to parameterize surface roughness. A thorough academic review of wetting and drying algorithms employed by contemporary numerical tidal models was conducted. Since nearly all population centers and valuable property are located in the overland regions of the model domain, the coastal models must adequately describe the inundation physics here. This is accomplished by techniques that generally fall into four categories: Thin film, Element removal, Depth extrapolation, and Negative depth. While nearly all wetting and drying algorithms can be classified as one of the four types, each model is distinct and unique in its actual implementation. The use of spatial elevation data is essential to accurate coastal modeling. Remotely sensed LiDAR is the standard data source for constructing topographic digital terrain models (DTM). Hydrographic soundings provide bathymetric elevation information. These data are combined to form a seamless topobathy surface that is the foundation for distributed coastal models. A three-point inverse distance weighting method was developed in order to account for the spatial variability of bathymetry data referenced to tidal datums. This method was applied to the Tampa Bay region of Florida in order to produce a seamless topobathy DTM. Remotely sensed data also contribute to the parameterization of surface roughness. It is used to develop land use / land cover (LULC) data that is in turn used to specify spatially distributed bottom friction and aerodynamic roughness parameters across the model domain. However, these parameters are continuous variables that are a function of the size, shape and density of the terrain and above-ground obstacles. By using LULC data, much of the variation specific to local areas is generalized due to the categorical nature of the data. This was tested by comparing surface roughness parameters computed based on field measurements to those assigned by LULC data at 24 sites across Florida. Using a t-test to quantify the comparison, it was proven that the parameterizations are significantly different. Taking the field measured parameters as ground truth, it is evident that parameterizing surface roughness based on LULC data is deficient. In addition to providing input parameters, remotely sensed data can also be used to assess the performance of coastal models. Traditional methods of model performance testing include harmonic resynthesis of tidal constituents, water level time series analysis, and comparison to measured high water marks. A new performance assessment that measures a model's ability to predict the extent of inundation was applied to a northern Gulf of Mexico tidal model. The new method, termed the synergetic method, is based on detecting inundation area at specific points in time using satellite imagery. This detected inundation area is compared to that predicted by a time-synchronized tidal model to assess the performance of model in this respect. It was shown that the synergetic method produces performance metrics that corroborate the results of traditional methods and is useful in assessing the performance of tidal and storm surge models. It was also shown that the subject tidal model is capable of correctly classifying pixels as wet or dry on over 85% of the sample areas. Lastly, since it has been shown that parameterizing surface roughness using LULC data is deficient, progress toward a new parameterization scheme based on 3-dimensional LiDAR point cloud data is presented. By computing statistics for the entire point cloud along with the implementation of moving window and polynomial fit approaches, empirical relationships were determined that allow the point cloud to estimate surface roughness parameters. A multi-variate regression approach was chosen to investigate the relationship(s) between the predictor variables (LiDAR statistics) and the response variables (surface roughness parameters). It was shown that the empirical fit is weak when comparing the surface roughness parameters to the LiDAR data. The fit was improved by comparing the LiDAR to the more directly measured source terms of the equations used to compute the surface roughness parameters. Future work will involve using these empirical relationships to parameterize a model in the northern Gulf of Mexico and comparing the hydrodynamic results to those of the same model parameterized using contemporary methods. In conclusion, through the work presented herein, it was demonstrated that incorporating remotely sensed data into coastal models provides many benefits including more accurate topobathy descriptions, the potential to provide more accurate surface roughness parameterizations, and more insightful performance assessments. All of these conclusions were achieved using data that is readily available to the scientific community and, with the exception of the Synthetic Aperture Radar (SAR) from the Radarsat-1 project used in the inundation detection method, are available free of charge. Airborne LiDAR data are extremely rich sources of information about the terrain that can be exploited in the context of coastal modeling. The data can be used to construct digital terrain models (DTMs), assist in the analysis of satellite remote sensing data, and describe the roughness of the landscape thereby maximizing the cost effectiveness of the data acquisition.
10

Rice yields under water-saving irrigation management : A meta-analysis

Åberg, Amanda January 2017 (has links)
Water scarcity combined with an increasing world population is creating pressure to develop new methods for producing food using less water. Rice is a staple crop with a very high water demand. This study examined the success in maintaining yields under water-saving irrigation management, including alternate wetting and drying (AWD). A meta-analysis was conducted examining yields under various types of water-saving irrigation compared to control plots kept under continuous flooding. The results indicated that yields can indeed be maintained under AWD as long as the field water level during the dry cycles is not allowed to drop below -15 cm, or the soil water potential is not allowed to drop below -10 kPa. Yields can likewise be maintained using irrigation intervals of 2 days, but the variability increases. Midseason drainage was not found to affect yield, though non-flooded conditions when maintained throughout most of the crop season appeared to be detrimental to yields. Increasingly negative effects on yields were found when increasing the severity of AWD or the length of the drainage periods. Potential benefits and drawbacks of water-saving irrigation management with regards to greenhouse gas emissions, soil quality and nutrient losses were discussed to highlight the complexity of the challenges of saving water in rice production.

Page generated in 0.0892 seconds