1 |
Phase separation in giant vesiclesLi, Yanhong January 2008 (has links)
Giant vesicles may contain several spatial compartments formed by phase separation within their enclosed aqueous solution. This phenomenon might be related to molecular crowding, fractionation and protein sorting in cells. To elucidate this process we used two chemically dissimilar polymers, polyethylene glycol (PEG) and dextran, encapsulated in giant vesicles. The dynamics of the phase separation of this polymer solution enclosed in vesicles is studied by concentration quench, i.e. exposing the vesicles to hypertonic solutions. The excess membrane area, produced by dehydration, can either form tubular structures (also known as tethers) or be utilized to perform morphological changes of the vesicle, depending on the interfacial tension between the coexisting phases and those between the membrane and the two phases. Membrane tube formation is coupled to the phase separation process. Apparently, the energy released from the phase separation is utilized to overcome the energy barrier for tube formation. The tubes may be absorbed at the interface to form a 2-demensional structure. The membrane stored in the form of tubes can be retracted under small tension perturbation.
Furthermore, a wetting transition, which has been reported only in a few experimental systems, was discovered in this system. By increasing the polymer concentration, the PEG-rich phase changed from complete wetting to partial wetting of the membrane. If sufficient excess membrane area is available in the vesicle where both phases wet the membrane, one of the phases will bud off from the vesicle body, which leads to the separation of the two phases. This wetting-induced budding is governed by the surface energy and modulated by the membrane tension. This was demonstrated by micropipette aspiration experiments on vesicles encapsulating two phases. The budding of one phase can significantly decrease the surface energy by decreasing the contact area between the coexisting phases. The elasticity of the membrane allows it to adjust its tension automatically to balance the pulling force exerted by the interfacial tension of the two liquid phases at the three-phase contact line. The budding of the phase enriched with one polymer may be relevant to the selective protein transportation among lumens by means of vesicle in cells. / In der wässrigen Lösung im Inneren von Riesenvesikeln können sich mehrere, räumlich getrennte Phasen ausbilden. Dieses Phänomen könnte im Zusammenhang stehen mit wichtigen Prozessen innerhalb von Zellen, wie etwa Fraktionierung und Sortieren von Proteinen, oder etwa das sog. “Molecular Crowding”. Wir studieren diesen Prozess am Beispiel von zwei unterschiedlichen Polymeren, Polyethylen Glycol (PEG) und Dextran, innerhalb von Riesenvesikeln. Die Dynamik der Phasentrennung dieser eingeschlossenen Polymerlösung lässt sich untersuchen, indem man die Vesikel einer hypertonischen Lösung aussetzt. Durch die Dehydrierung entsteht dabei überschüssige Membranfläche. Je nach Grenzflächenspannung zwischen den koexistierenden Phasen, sowie zwischen der Membran und den beiden Phasen, wird diese überschüssige Fläche entweder zur Ausbildung röhrchenartiger Strukturen verwendet, oder aber es stellen sich morphologische Veränderungen am Vesikel ein. Die Ausbildung der Membranröhrchen ist offenbar gekoppelt an den Phasentrennungsprozess: Die Energie, die bei Phasentrennung frei wird, dient offenbar dazu, die Energiebarriere der Röhrchenbildung zu überwinden. Die Röhrchen können an der Grenzfläche absorbiert werden und dort eine zweidimensionale Struktur ausbilden. Durch kleine Störungen in der Spannung kann die in Form von Röhrchen gespeicherte Membran wieder in deren Oberfläche zurückgezogen werden.
Desweiteren wurde in diesem System ein Benetzungsübergang entdeckt, der bisher nur in wenigen experimentellen Systemen beobachtet werden konnte: Erhöht man die Polymerkonzentration, so geht die PEG-reiche Phase von vollständiger zu unvollständiger Benetzung der Membran über. Steht in einem Vesikel, in dem beide Phasen die Membran benetzen, ausreichend überschüssige Membranfläche zur Verfügung, so wird sich eine Phase aus dem Vesikelkörper herauswölben, was zur Trennung der beiden Phasen führt. Dieser benetzungsinduzierte Auswölbungsprozess wird durch die Oberflächenenergie bestimmt und von der Membranspannung moduliert. Dies konnte experimentell an Vesikeln gezeigt werden, die zwei Phasen beinhalten, indem durch eine Mikropipette ein Unterdruck erzeugt wurde. Die Oberflächenenergie kann durch Auswölbung einer der Phasen signifikant verringert werden, da die Kontaktfläche zwischen den koexistierenden Phasen verkleinert wird. Die Elastizität der Membran erlaubt es, die Spannung automatisch anzupassen, sodass die ziehende Kraft ausgeglichen wird, die durch die Grenzflächenspannung der beiden flüssigen Phasen an der drei-Phasen Kontaktlinie ausgeübt wird. Die Auswölbung einer durch Polymere angereicherten Phase könnte relevant sein für den selektiven Transport von Proteinen mit Vesikeln in der Zelle.
|
2 |
Particle Assisted WettingDing, Ailin 13 September 2007 (has links) (PDF)
Die Benetzbarkeit und Nichtbenetzbarkeit von Oberflächen durch eine Flüssigkeit sind
faszinierende und wichtige Phänomene in Wissenschaft und Technologie. Jüngst wurde
entdeckt, dass Partikel die Benetzung einer Wasseroberfläche durch ein Öl unterstützen
können. Es wurde eine Theorie entwickelt, das Prinzip der zu beschreiben. In der vorliegenden
Doktorarbeit wurde diese Theorie im Experiment sowohl qualitativ als auch quantitativ
untersucht, wobei zwei Arten von Kieselgelpartikeln Verwendung fanden.
Mit Hilfe einer Reihe unregelmäßig geformter Partikel mit variierender Hydrophobie
wurde der Einfluss der Oberflächenhydrophobie der Partikel auf die partikel-assistierte
Benetzung untersucht. Es wurde herausgefunden, dass die Partikel mit höchster Hydrophilie
Linsen aus reinem Öl bilden, während die Partikel in die Wasserphase abtauchen.
Die Partikel mit größter Hydrophobie hingegen bewirken die Ausbildung von kleinen Bereichen,
in denen Öl und Partikel eine stabile homogene Schicht formen. Für Partikel mit
mittlerer Hydrophobie wurden beide Phänomene beobachtet. Diese drei verschiedenen
Beobachtungen bestätigen, dass die Oberflächenhydrophobie der Partikel das Benetzungsverhalten
des Öls auf der Wasseroberfläche bestimmen.
Für die unregelmäßig geformten Partikel war aufgrund des unbekannten Kontaktwinkels
ein direkter Vergleich zur Theorie nicht möglich. Um die Theorie quantitativ zu prüfen,
wurden sphärische Partikel synthetisiert und ihre Oberflächen mit Hilfe von zehn Silanisierungsmittel
modifiziert. Anschließend wurde ein Vergleich der experimentellen Ergebnisse
mit dem entsprechenden theoretischen Phasendiagramm durchgeführt. Die Untersuchungen
zeigten, dass die theoretischen Vorhersagen zum Großteil mit den experimentellen
Ergebnissen übereinstimmen. Es wurden alle Fälle der Benetzung beobachtet, die
auch in der theoretischen Beschreibung berücksichtigt wurden. Darüber hinaus wurden
auch Abweichungen von der Theorie festgestellt. Haben die Partikel ähnliche Affinitäten
zur Luft/Öl- und Öl/Wasser-Grenzfläche, hängt die Beschaffenheit der Benetzungsfilme
zusätzlich vom Oberflächendruck ab. Deshalb könnte es notwendig sein, die einfache
Theorie zu erweitern um den beschriebenen Beobachtungen Rechnung zu tragen. / Wetting and de-wetting of surfaces by a liquid are fascinating and important phenomena
in science and technology. Recently, it was discovered that particles can assist the wetting
of a water surface by an oil, and a theory describing the principle behind particle assisted
wetting was developed. In this thesis, the theory was experimentally investigated qualitatively
and quantitatively by using two series of silica particles.
The influence of the surface hydrophobicity of the particles on particle assisted wetting
was investigated by a series of irregular shaped particles with varying hydrophobicity. By
applying mixtures of particles and oil to a water surface, it was found that for the most
hydrophilic particles, only lenses of pure oil formed, with the particles being submerged
into the aqueous phase. The most hydrophobic particles helped to form patches of stable
homogenous mixed layers composed of oil and particles. For particles with intermediate
hydrophobicity, lenses and patches of mixed layers were observed. These three different
observations verified that the hydrophobicity of the particle surface determines the wetting
behaviour of the oil at the water surface.
For the irregular shaped particles with unknown contact angles with liquid interfaces, no
direct comparison to the theory was possible. To test the theory quantitatively, a series of
spherical particles was synthesized and their surfaces were modified by ten kinds of silane
coupling agents; then the experimental results were compared with the corresponding
theoretical phase diagram. It indicated that the theory agrees at large with the experimental
results. All scenarios of wetting layers taken into account in the theoretical description
were observed. In the fine print, deviations from the theory were also observed. If the particles
have similar affinities to air/oil and oil/water interfaces, the experimentally observed
morphology of the wetting layers depends in addition on the surface pressure. It
might therefore be necessary to extend the simple theoretical picture to take these observations
into accounts.
|
3 |
Detection and drug delivery from superhydrophobic materialsFalde, Eric John 17 February 2016 (has links)
The wetting of a rough material is controlled by surface chemistry and morphology, the
liquid phase, solutes, and surfactants that affect the surface tension with the gas phase, and environmental conditions such as temperature and pressure. Materials with high (>150˚) apparent contact angles are known as superhydrophobic and are very resistant to wetting. However, in complex biological mixtures eventually protein adsorbs, fouling the surface and facilitating wetting on time scales from seconds to months. The work here uses the partially-wetted (Cassie-Baxter) to fully-wetted (Wenzel) state transition to control drug delivery and to perform surfactant detection via surface tension using hydrophobic and superhydrophobic materials. First there is an overview of the physics of the non-wetting state and the transition to wetting. Then there is a review of how wetting can be controlled by outside stimuli and applications of these materials. Next there is work presented on controlling drug release using superhydrophobic materials with controlled wetting rates, with both in vitro and in vivo results. Then there is work on developing a sensor based on this wetting state transition and its applications toward detecting solute levels in biological fluids for point-of-care diagnosis. Finally, there is work presented on using these sensors for detecting the alcohol content in wine and spirits.
|
4 |
Particle Assisted WettingDing, Ailin 10 September 2007 (has links)
Die Benetzbarkeit und Nichtbenetzbarkeit von Oberflächen durch eine Flüssigkeit sind
faszinierende und wichtige Phänomene in Wissenschaft und Technologie. Jüngst wurde
entdeckt, dass Partikel die Benetzung einer Wasseroberfläche durch ein Öl unterstützen
können. Es wurde eine Theorie entwickelt, das Prinzip der zu beschreiben. In der vorliegenden
Doktorarbeit wurde diese Theorie im Experiment sowohl qualitativ als auch quantitativ
untersucht, wobei zwei Arten von Kieselgelpartikeln Verwendung fanden.
Mit Hilfe einer Reihe unregelmäßig geformter Partikel mit variierender Hydrophobie
wurde der Einfluss der Oberflächenhydrophobie der Partikel auf die partikel-assistierte
Benetzung untersucht. Es wurde herausgefunden, dass die Partikel mit höchster Hydrophilie
Linsen aus reinem Öl bilden, während die Partikel in die Wasserphase abtauchen.
Die Partikel mit größter Hydrophobie hingegen bewirken die Ausbildung von kleinen Bereichen,
in denen Öl und Partikel eine stabile homogene Schicht formen. Für Partikel mit
mittlerer Hydrophobie wurden beide Phänomene beobachtet. Diese drei verschiedenen
Beobachtungen bestätigen, dass die Oberflächenhydrophobie der Partikel das Benetzungsverhalten
des Öls auf der Wasseroberfläche bestimmen.
Für die unregelmäßig geformten Partikel war aufgrund des unbekannten Kontaktwinkels
ein direkter Vergleich zur Theorie nicht möglich. Um die Theorie quantitativ zu prüfen,
wurden sphärische Partikel synthetisiert und ihre Oberflächen mit Hilfe von zehn Silanisierungsmittel
modifiziert. Anschließend wurde ein Vergleich der experimentellen Ergebnisse
mit dem entsprechenden theoretischen Phasendiagramm durchgeführt. Die Untersuchungen
zeigten, dass die theoretischen Vorhersagen zum Großteil mit den experimentellen
Ergebnissen übereinstimmen. Es wurden alle Fälle der Benetzung beobachtet, die
auch in der theoretischen Beschreibung berücksichtigt wurden. Darüber hinaus wurden
auch Abweichungen von der Theorie festgestellt. Haben die Partikel ähnliche Affinitäten
zur Luft/Öl- und Öl/Wasser-Grenzfläche, hängt die Beschaffenheit der Benetzungsfilme
zusätzlich vom Oberflächendruck ab. Deshalb könnte es notwendig sein, die einfache
Theorie zu erweitern um den beschriebenen Beobachtungen Rechnung zu tragen. / Wetting and de-wetting of surfaces by a liquid are fascinating and important phenomena
in science and technology. Recently, it was discovered that particles can assist the wetting
of a water surface by an oil, and a theory describing the principle behind particle assisted
wetting was developed. In this thesis, the theory was experimentally investigated qualitatively
and quantitatively by using two series of silica particles.
The influence of the surface hydrophobicity of the particles on particle assisted wetting
was investigated by a series of irregular shaped particles with varying hydrophobicity. By
applying mixtures of particles and oil to a water surface, it was found that for the most
hydrophilic particles, only lenses of pure oil formed, with the particles being submerged
into the aqueous phase. The most hydrophobic particles helped to form patches of stable
homogenous mixed layers composed of oil and particles. For particles with intermediate
hydrophobicity, lenses and patches of mixed layers were observed. These three different
observations verified that the hydrophobicity of the particle surface determines the wetting
behaviour of the oil at the water surface.
For the irregular shaped particles with unknown contact angles with liquid interfaces, no
direct comparison to the theory was possible. To test the theory quantitatively, a series of
spherical particles was synthesized and their surfaces were modified by ten kinds of silane
coupling agents; then the experimental results were compared with the corresponding
theoretical phase diagram. It indicated that the theory agrees at large with the experimental
results. All scenarios of wetting layers taken into account in the theoretical description
were observed. In the fine print, deviations from the theory were also observed. If the particles
have similar affinities to air/oil and oil/water interfaces, the experimentally observed
morphology of the wetting layers depends in addition on the surface pressure. It
might therefore be necessary to extend the simple theoretical picture to take these observations
into accounts.
|
5 |
Replacement Rates of Initially Hydrocarbon-Filled Microscopic Cavities with WaterLarson, Hans Christian 01 June 2019 (has links)
Wetting behaviors influence many aspects of life and industry from consumer product goods to oil recovery to cosmetics. While the traditional solid-liquid-vapor (SLV) system has been studied for many years now, wetting transitions in the solid-liquid-liquid (SLL) system has remained relatively unexplored. The purpose of this work is to bring light to the wetting transition of the solid-liquid-liquid system and to understand the replacement rates of initially hydrocarbon-filled microscopic cavities with water and the factors affecting these rates. Factors studied were viscosity, density, diffusion related properties, and surface related properties in both hydrocarbon-saturated and hydrocarbon-non-saturated conditions. Cylindrical microscopic cavities were etched in a silicon wafer, filled with various organic solvents dyed with fluorophores, then submerged in water. Through fluorescence microscopy techniques, the transition or replacement rates of the initially hydrocarbon-filled cavities with water in both hydrocarbon-saturated and hydrocarbon-absent water conditions are observed. Among the factors we investigated, namely viscosity, density, surface chemistry, and diffusive flux (composed of solubility and diffusivity), diffuse flux dominated replacement rates in hydrocarbon-absent water conditions. By using hydrocarbon-saturated water, diffusive flux was minimized, allowing for deeper investigation of other factors. In the hydrocarbon-saturated scenario, replacement rates are largely affected by initial fluid motion, specific cavity geometry, and cavity penetration mechanisms. Image analysis reveals the geometry of the oils in the cavities and shows how the transition from hydrocarbon-fully-filled to hydrocarbon-partially-filled states occurs in the SLL system.
|
6 |
Etude du mouillage de structures fibreuses multi échelles : robustesse de l’hydrophobicité / Study of wetting fibrous multi-scale structures : hydrophobicity's robustnessMelki, Safi 25 September 2014 (has links)
Ces travaux ont pour but d’étudier le comportement au mouillage spontané (statique et dynamique) ainsi que le mouillage forcé, sous l’effet de la compression, de différentes structures textiles hydrophobes. Le mouillage forcé a permis d’évaluer la robustesse de l’hydrophobicité des structures textiles. En parallèle, un nouveau dispositif automatisé et plus approprié à l’étude du mouillage forcé a été mis au point. Les principaux résultats ont montré qu’une bonne hydrophobicité ne conduit pas forcément à une bonne robustesse : spontanément, la structure floquée est la seule à favoriser une configuration de Cassie-Baxter, cependant, sa robustesse est plus faible que celle des tissus. Les différents essais ont mis en évidence l’influence importante et majeure de certains paramètres, appropriés à chaque structure textile, sur son hydrophobicité et sa robustesse comme la densité et la finesse des poils pour les tissus floqués. Ils ont également montré que certains facteurs pouvaient améliorer l’hydrophobicité mais pas sa robustesse ou inversement. Ainsi, la robustesse de l’hydrophobicité n’est pas prévisible à partir des mesures du mouillage spontané. / This work aims to study the spontaneous (static and dynamic) and the forced (under the effect of compression) wetting behaviour of different water-repellent textile structures. Forced wetting allowed to evaluate the robustness of the hydrophobicity of textile structures. In parallel, a new automated and more suitable device was developed for the study of forced wetting. The main results showed that a good hydrophobicity does not necessarily lead to a good robustness: spontaneously, the flocked structure is the only one to foster the Cassie-Baxter state, however, its hydrophobicity’s robustness is lower than that of the tissue. The different tests have highlighted the important and major influence of some parameters, adapted to each textile structure, on its hydrophobicity and its robustness such as the density and fineness of bristles for flocked fabrics. They also showed that some factors can improve the hydrophobicity but not its robustness or vice versa. Thus, the robustness of the hydrophobicity is not predictable from the measures of spontaneous wetting.
|
7 |
Evaporation-Induced Salt Precipitation in Porous Media and the Governing Solute TransportRishav Roy (13149219) 25 July 2022 (has links)
<p> </p>
<p>Water scarcity is a global problem impacting a majority of the world population. A significant proportion of the global population is deprived of clean drinking water, an impact felt by the rural as well as urban population. Saltwater desalination provides an attractive option to produce clean water. Some technologies to generate potable water include reverse osmosis (RO), multi-stage flash distillation (MSF), vapor compression distillation and multi-effect distillation (MED). Distillation plants such as those in MED often have falling-film evaporators operating at low energy conversion efficiency and hence distillation is performed over multiple stages (or effects). Porous materials can be utilized as evaporators in such plants with the objective of leveraging their superior efficiency. This can potentially decrease the number of effects over which distillation occurs. However, evaporation of high-salinity salt solution eventually results in salt precipitation which can cause fouling and induce structural damages, especially if the precipitates appear within the porous medium. Crystallization-induced structural damages are also of significant concern to building materials and for their role in weathering of historical monuments. It is thus crucial to understand the mechanisms governing salt precipitation in a porous medium.</p>
<p>Transport of solute in such a medium is either driven by flow of the solution (advection) or by concentration gradients (diffusion). The dynamics of solute transport is further complicated due to the involvement of a reaction term accounting for any salt precipitation. The relative strengths of these driving forces determine the solute transport behavior during an evaporation-driven process. The wide-scale applications of solute transport and its complicated nature warrant investigation, both experimental and theoretical, of the dependence of solute transport and the subsequent precipitation on the operating conditions and the properties of the porous medium.</p>
<p>This dissertation first focuses on developing a novel modeling framework for evaluating the transient behavior of the solute mass fraction profile within the domain of a one-dimensional porous medium, and extending its capability to predict the formation of salt precipitate in the medium. Experimental investigations are then performed to study the formation of precipitate on sintered porous copper wicks of different particle-size compositions, and developing a mechanistic understanding of the governing principles.</p>
<p>A numerical modeling framework is developed to analyze evaporation-driven solute transport. Transient advection-diffusion equations govern the salt mass fraction profile of the solution inside the porous medium. These governing equations are solved to obtain the solute mass fraction profile within the porous medium as well as the effloresced salt crust. Further accounting for precipitation allows a study of the formation and growth of efflorescence and subflorescence. Crystallization experiments are performed by allowing a NaCl solution to evaporate from a porous medium of copper particles and the subflorescence trends predicted by the model are validated. The modeling framework offers a comprehensive tool for predicting the spatio-temporal solute mass fraction profiles and subsequent precipitation in a porous medium.</p>
<p>The dependence of efflorescence pattern on the properties of a porous medium is also investigated. Efflorescence patterns are visually observed and characterized on sintered copper particle wicks with spatially unimodal and bimodal compositions of different particle sizes. Efflorescence is found to form earlier and spread readily over a wick made from smaller particles, owing to their lower porosity, while it is limited to certain areas of the surface for wicks composed of the larger particles. A scaling analysis explains the observed efflorescence patterns in the bimodal wicks caused by particle size-induced non-uniform porosity and permeability. The non-uniformity reduces the advective flux in a high-permeability region by diverting flow towards a low-permeability region. This reduction in advective flux manifests as an exclusion distance surrounding a crystallization site where efflorescence is not expected to occur. The dependence of this exclusion distance on the porosity and permeability of the porous medium and the operating conditions is investigated. A large exclusion distance associated with the regions with bigger particles in the bimodal wicks explains preferential efflorescence over the regions with smaller particles. This novel scaling analysis coupled with the introduction of the exclusion distance provides guidelines for designing heterogeneous porous media that can localize efflorescence.</p>
<p>Additionally, droplet interactions with microstructured superhydrophobic surfaces as well as soft surfaces were investigated during the course of this dissertation, separate from the above investigations. These investigations involve the interplay of surface energies with electrical or elastic energies and are studied both experimentally and through theoretical models, and therefore are retained as additional chapters in the thesis as being of relevant interest. Electrowetting experiments are performed on superhydrophobic surfaces with re-entrant structures to study their resilience to the Cassie-to-Wenzel transition. The deformation of soft surfaces caused by forces exerted by microscale droplets is studied and the resulting interaction between multiple droplets is explored. </p>
|
Page generated in 0.1363 seconds