• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Desenvolvimento de catalisadores de níquel e de cobre obtidos através de hidrotalcitas para a purificação de hidrogênio

Meza Fuentes, Edgardo January 2009 (has links)
Submitted by Ana Hilda Fonseca (anahilda@ufba.br) on 2016-09-05T18:58:35Z No. of bitstreams: 1 Tesis Final Edgardo Meza Fuentes (4).pdf: 4706850 bytes, checksum: bee3311a2964aa593f1d6a612f6eb874 (MD5) / Approved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2016-09-06T12:40:55Z (GMT) No. of bitstreams: 1 Tesis Final Edgardo Meza Fuentes (4).pdf: 4706850 bytes, checksum: bee3311a2964aa593f1d6a612f6eb874 (MD5) / Made available in DSpace on 2016-09-06T12:40:55Z (GMT). No. of bitstreams: 1 Tesis Final Edgardo Meza Fuentes (4).pdf: 4706850 bytes, checksum: bee3311a2964aa593f1d6a612f6eb874 (MD5) / FAPESB / Os problemas ambientais gerados pelo uso de combustíveis de origem fóssil e o desenvolvimento de novas tecnologias para obtenção de energia a partir do hidrogênio, têm renovado o interesse pela reação de deslocamento de deslocamento de monóxido de carbono com vapor d’água. Esta reação é usada para a eliminação do monóxido de carbono resultante da reforma de gás natural e para aumentar a produção de hidrogênio. Os catalisadores usados nesta reação estão restringidos a ser usados em condições especificas de temperatura, devido a fatores cinéticos e termodinâmicos. Isto tem motivado o estudo de sólidos que possam ser usados em diversas condições de temperatura e que apresentem atividade e seletividade elevadas. Neste trabalho foram preparados catalisadores a base de níquel e de cobre, obtidos a partir de precursores do tipo hidrotalcita; compostos que geram materiais com alta área superficial específica, homogeneidade das fases presentes e pequenas partículas de óxidos ou de metais. Os sólidos sintetizados foram caracterizados pelas técnicas de espectroscopia de absorção atômica, analise elementar de carbono, difração de raios X, espectroscopia no infravermelho, termogravimétria e analise diferencial de temperatura, espectroscopia Raman, medida da área superficial especifica e de porosidade, redução termoprogramada, medida de área metálica de cobre e avaliadas na reação de deslocamento de monóxido de carbono com vapor d’água. A estrutura do tipo hidrotalcita foi observada em todos os sólidos. A presença e o conteúdo de alumínio e do zinco nestes materiais ocasionam variações nos parâmetros de rede das estruturas do tipo hidrotalcita, as quais determinam as propriedades texturais e estruturais dos sólidos calcinados. A incorporação de cátions de alumínio na rede do óxido de níquel dificulta os processos de redução deste óxido, mas, a adição do zinco diminui esse efeito. Os catalisadores de cobre apresentaram baixas áreas superficiais específicas, não sendo observada a incorporação de alumínio na rede do óxido de cobre. Os catalisadores de níquel e alumínio apresentaram elevadas áreas superficiais especificas, enquanto que os catalisadores de cobre apresentaram as áreas superficiais especificas mais baixas. Os sólidos contendo níquel apresentam um comportamento mesoporosos, enquanto que aqueles contendo cobre apresentaram meso e macroporos em sua estrutura. Os catalisadores contendo níquel e alumínio são ativos para a reação em estudo, alcançando-se conversões do 100 %, mas também produzem metano. A adição de zinco promove a formação de partículas menores de oxido de níquel, minimizando a produção de metano. Os catalisadores de cobre são menos ativos. O solido mais promissor é aquele contendo 37% de níquel, 37 % de zinco e 25 % de alumínio, que conduz à conversão do 100 % de monóxido de carbono e 100 % de seletividade a dióxido de carbono, mostrando-se também estável na temperatura de estudo / The environmental problems coming from the use of fossil fuels, as well as the development of new technologies for energy generation from hydrogen, have renewed the interest for the water gas shift reaction (WGSR). This reaction is used for removing carbon monoxide produced from the stream produced during the natural gas reforming; at the same time, the production of hydrogen is increased. The catalysts used for this reaction are limited by kinetic and thermodynamic factors. This has led to the need of searching solids that can be used at various temperatures, showing high activity and selectivity towards carbon dioxide. In order to find new catalysts for this reaction, nickel and copper-based catalyst were prepared in this work, from hydrotalcite-like precursors. These compounds are expected to produce materials with high specific surface area, homogeneity of phases and small particles of oxides or metals, after the calcination and reduction processes. Samples were prepared from aluminum, zinc and nickel (or copper) nitrates and characterized by atomic absorption spectroscopy, X-ray diffraction, infrared spectroscopy, thermogravimetry, Raman spectroscopy, specific surface area and porosity measurements, temperature-programmed reduction and dispersion measurements. The catalysts were evaluated in the WGSR at 1 atm in a range of 150 to 450 oC. The production of hydrotalcite-type structure was noted for all solid. The presence and the content of aluminum and zinc caused changes in the cell parameters of hydrotalcite-type structure, which determined the structural and textural properties of solids after calcination. Aluminum cations were incorporated into the crystal lattice of nickel oxide, hindering its reduction of this oxide, but the addition of zinc decreased this effect. After calcination, the copper-containing catalysts showed low specific surface areas, and no aluminum cation was observed into the copper oxide lattice. Aluminum and nickel-based sample showed the highest specific surface area, while the copper-containing solids showed the lowest ones. The nickel-based solids were mesoporous with some macropores while the copper-based ones were macroporous. The nickel and aluminum-based catalyst was active for WGSR and achieved 100 % of conversion, but produced also methane. The addition of zinc promotes the formation of small nickel oxide particles that minimized methane production. The copper-based catalysts were less active than those of nickel. The most promising catalyst for WGSR was the sample with 37 % of nickel, 37 % of zinc and 25 % of aluminum which was 100 % selective towards hydrogen and led to 100 % of conversion, being stable in the studied temperature range.
12

Lokalizace pomocí aplikace určené pro platformu Java ME využívající GPS / GPS based Localization using the Java ME application

Figurny, Radek January 2009 (has links)
The task of the Master's thesis has been to develop the MIDlet, which is able to receive data from an external GPS module via Bluetooth. Data are received in the NMEA 0183 format and are processed to extract longitude, latitude, elevation, velocity, number of visible satellites and measurement accuracy of longitude, latitude and elevation. Users have a possibility to save their actual location with a short description to the cell phone’s memory. The MIDlet is also able to save a user defined way-point and navigate to this way-point. The MIDlet itself was developed in the Netbeans IDE with a software development kit (SDK) made by Nokia company. This kit is designed for the Symbian OS s60 3rd edition FP1, which contains a s60 emulator and a s60 MIDlet for a direct compilation in the cell phone. The MIDlet is made of three main parts. The first part shows a longitude, latitude, elevation, velocity, longitude and latitude measurement accuracy, date and time. The second one shows a direction of north, latitude and longitude. The last one shows a direction to the selected way-point and a distance to this location. In theoretic part of the thesis there are described the GPS navigation system, Bluetooth system, geodetic system WGS 84 and programing language Java and its part Java ME.
13

Mapování bezdrátových technologií v terénu s využitím GPS / Wireless Networks Outdoor Mapping with GPS Localisation

Kabátek, Petr January 2007 (has links)
This thesis deals with the monitoring of wireless nets in terrain. The author will be browsing terrain and there will be extracted some information about accessible wireless nets. For parameters of wireless nets we consider for example the name of wireless net, signal strength, type of security etc. These parameters (of wireless nets and position) are going to be recorded and saved into the database. Using this database it will be possible to perform some further operations like generation maps of wireless networks or detection positions of access points, etc..
14

Novel Synthesis Of Transition Metal And Nobel Metal Ion Substituted CeO2 And TiO2 Nanocrystallites For Hydrogen Generation And Electro-Chemical Applications

Singh, Preetam 07 1900 (has links) (PDF)
Ceria based materials have attracted a great deal of interest particularly in area of UV shielding, oxide ion conductivity, solid state electrolyte for fuel cells, automotive exhaust catalysis, water gas shift (WGS) reaction catalysis and also in thermo-chemical water splitting cycles to generate hydrogen. Therefore great deal of efforts was devoted to synthesize nanocrystalline ceria and related materials with different shape and sizes. For example, hierarchically mesostructured doped CeO2 showed potential photvoltic response for solar cell applications. Substitution of lower valent metal ions (Ca2+, Gd3+, Tb3+, Sm3+) in CeO2 enhances oxide ion conductivity for solid oxide fuel cell applications. Eventhough ZrO2 is a nonreducible oxide, CeO2-ZrO2 solid solution has attracted a lot of attention in exhaust catalysis because it exhibited high oxygen storage capacity (OSC). Noble metal ion (M = Pt4+/2+, Au3+, Rh3+, Pd2+ and Ag+) substituted CeO2 (Ce1-xMxO2-δ and Ti1-xMxO2-δ, x = 0.01-0.03) prepared by solution combustion method have shown much higher three-way catalytic property compared same amount of noble metal impregnated to CeO2. Ionically substituted Pt and Au in CeO2 also showed high WGS activity. CeO2-MOx (M= Mn, Fe, Cu, Ni) mixed oxides have shown high activity for hydrogen generation by thermal splitting of water. In chapter 1, we have discussed recent developments on various synthesis strategies of ceria based materials for specific catalytic application. In this thesis, we have explored new route to synthesize Ce1-xMxO2-δ and Ti1-xMxO2-δ (M = transition metal, noble metal) nanocrystallites. Specifically we have addressed the effect of reducible metal ion substitution on the OSC of CeO2 for auto exhaust treatment, hydrogen generation and electro-chemical applications. Controlled synthesis of CeO2 and Ce1-xMxO2-δ (M = Zr, Ti, Y, Pr and Fe) nanocrystallites by hydrothermal method is presented in Chapter 2. The method is based on complexation of metal ion by diethylenetriamine (DETA) or melamine and the simultaneous hydrolysis of metal ion complexes in hydrothermal condition. Size of the crystallites can be controlled by varying the time and temperature of the reaction. 15% Fe3+ ion substituted CeO2 (Ce0.85Fe0.15O2-δ) nanocrystallites have shown higher oxygen storage capacity than Ce0.5Zr0.5O2 at lower temperature. A brief description of material characterization techniques such as powder X-ray diffraction (XRD) and Rietveld refinement of structure, high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) is presented. The home-built hydrogen uptake measurement system for OSC study and temperature programmed catalytic reaction system with a quadrupole mass spectrometer and an on-line gas-chromatograph for gas analysis is also described in this chapter. In chapter 3, hydrothermal synthesis of Ce1-xCrxO2+δ (0≤x≤1/3) nanocrystallites is presented. Up to 33% Cr ion substitution in CeO2 could be achieved only by the complexation of Ce(NH4)2(NO3)6 and CrO3 with DETA and simultaneous hydrolysis of the complexes in hydrothermal condition at 200 oC. Powder XRD, XPS and TEM studies confirm that the compound crystallizes in cubic fluorite structure where Ce exist in +4 oxidation state and Cr exist in 4+ and +6 (mixed valance) oxidation states in the ratio of 2: 1. Composition x = 0.33 (Ce2/3Cr1/3O2+δ) showed higher OSC (0.33 mol of [O]) than the maximum OSC observed for CeO2-ZrO2 solid solutions. Formation and higher OSC of Ce2/3Cr1/3O2+δ is attributed to interaction of Ce4+/3+ and Cr3+/4+/6+ redox couples in fluorite structure. The material shows oxygen evolution at ~400 oC in air and hence it is a true oxygen storage material. Oxygen evolution property of Ce0.67Cr0.33O2.11 and subsequent generation of hydrogen by thermal splitting of water is presented in chapter 4. Among the ceria based oxides, Ce0.67Cr0.33O2.11 being the only compound like UO2+δ to have excess oxygen possessing fluorite structure, it releases a large proportion of its lattice oxygen (0.167 M [O]/mole of compound) by heating the material under N2 flow at relatively low temperature (465 oC) directly and almost stoichiometric amount of H2 (0.152 M/Mol of compound) is generated at much lower temperature (65 oC) by thermosplitting of water. The reversible nature of oxygen release and intake of this material is attributed to its fluorite structure and internal coupling between the Ce4+/Ce3+ and Cr4+/6+/Cr3+ redox couples. In chapter 5, we present the hydrothermal synthesis and three-way catalytic activity of Ce1-xRuxO2-δ (0≤x≤0.1) nanocrystallites. Powder XRD, Rietveld refinement, TEM and XPS reveals that the compounds crystallized in fluorite structure where Ru exist in +4 state and Ce in mixed valent (+3, +4) state. Substitution of Ru4+ ion in CeO2 activated the lattice oxygen and Ce0.9Ru0.1O2-δ can reversibly releases 0.42[O]/mol of compound, which is higher than maximum OSC of 0.22 [O]/mol of compound observed for Ce0.50Zr0.50O2. Utilization of higher OSC of Ce1-xRuxO2-δ (x = 0.05 and 0.10) is also shown by low temperature CO oxidation with these catalysts, both in presence/absence of feed oxygen. Ru4+ ion act as active centre for reducing molecules (CO, hydrocarbon ‘HC’) and oxide ion vacancy acts as an active centre for O2 and NOx in this compound. Ce1-xRuxO2-δ not only act as a high oxygen storage material but it also shows high activity towards CO, hydrocarbon ‘HC’ oxidation and NO reduction by CO at low temperature with high N2 selectivity for 3-way catalysis. Study of water gas shift reaction over Ce0.95Ru0.05O2-δ catalyst is presented in chapter 6. The catalyst showed very high WGS activity in terms of high conversion rate (20.5 μmol.g-1.s-1 at 275 oC) and low activation energy (~50.6 kcal/mol). The reason for this seems to be high adsorption propensity of CO on Ru4+ ion and easy extraction of oxygen from lattice to form CO2. This step creates oxide ion vacancy in the catalyst lattice and H2O can adsorb on lattice sites oxygen vacancy and regenerate the lattice by releasing H2. Even in presence of externally fed CO2 and H2, complete conversion of CO to CO2 was observed with 100 % H2 selectivity with Ce0.95Ru0.05O2-δcatalyst in the temperature range of 305-385 oC and no trace of methane formation was observed in this temperature range. Catalyst does not deactivate in long duration on/off WGS reaction cycle because sintering of noble metal or active sites is avoided in this catalyst as Ru4+ ion is substituted in CeO2 lattice. Due to highly acidic nature of Ru4+ ion, surface carbonated formation is prohibited. In chapter 7, synthesis of Ce1-xFexO2-δ (0≤x≤0.45) and Ce0.65Fe0.33Pd0.02O2-δnanocrystallites is presented by sonochemical method. Powder XRD, XPS and TEM studies confirm that the compounds of ~4 nm sizes is crystallized in fluorite structure where Fe is in +3, Ce is in +4 and Pd is in +2 oxidation state. Due to substitution of smaller Fe3+ ion in CeO2, lattice oxygen is activated and Ce0.67Fe0.33O1.835 reversibly releases 0.31[O] up to 600 oC which is higher or comparable to the maximum OSC observed for CeO2-ZrO2 based solid solutions. Due to internal interaction of Pd2+/0(0.89 V), Fe3+/2+ (0.77 V) with Ce4+/3+ (1.61 V) redox couples, Pd ion accelerates the electron transfer from Fe2+ to Ce4+ in Ce0.65Fe0.33Pd0.02O1.815, making it a high oxygen storage material as well as highly active catalyst for CO oxidation and WGS reaction. Activation energy for CO oxidation with O2 over Ce0.65Fe0.33Pd0.02O1.815 is found as low as 38 kJ/mol. CO conversion to CO2 is 100% H2 specific in WGS reaction with these catalysts. Conversion rate was found as high 27.2 μmol.g-1.s-1 and activation energy was found 46.4 kJ/mol for Ce0.65Fe0.33Pd0.02O1.815. Only 1-3% Pt, Pd ion can be substituted in CeO2 is by the solution combustion method. We show that even up to 10% of Pt and Pd ion can be substituted in CeO2 by sonication method. In chapter 8, we present the sonochemical synthesis redox property and methanol electro-oxidation activity of hierarchical Ce1-xMxO2-δ (M = Pt and Pd, 0≤x≤0.1) nanocrystallites. Powder XRD, TEM, SEM and XPS study confirms that hierarchical structure compound crystallize in fluorite structure. Pt exists in +4 state and Ce in mixed valent (+3, +4) state in Ce1-xPtxO2-δ and Pd exist in +2 state and Ce in mixed valent (+3, +4) state in Ce1-xPdxO2-δ. Substitution of Pt and Pd ion in CeO2 activated the lattice oxygen. Hydrogen absorption study show higher H/Pt ratio ~8.1 and H/Pd ratio ~4.2 in respective oxides. Reversible nature of higher oxygen storage capacity or higher H/P, H/Pd ratio is due to interaction of redox couples of Pt4+/2+(0.91V), Pt2+/0(1.18V), Pd2+/0(0.92V) and Ce4+/3+(1.61V). Due to participation of lattice oxygen, Ce0.95Pt0.05O1.95 and Ce0.95Pd0.05O1.90 have shown higher electro-oxidation of methanol compared to same moles of Pt in 5%Pt/C. In chapter 9, we present sonochemical synthesis of Ti1-xPtxO2 (0≤x≤0.1) nanocrystallites: a new high capacity anode material for rechargeable Li ion battery. Continuing our interest in synthesis of nanomaterials, we thought if we can extend the same sonochemical method to synthesize metal ion doped TiO2. Doping of TiO2 with a suitable metal ion where dopant redox potential couples with that of titanium (Ti4+) and act as catalyst for additional reduction of Ti4+ to Ti2+ (Ti4+ →Ti3+→Ti2+) is envisaged here to enhance lithium storage even higher than one Li/TiO2. 10 atom % Pt ion substituted TiO2, Ti0.9Pt0.1O2 nanocrystallites of ~4 nm size was synthesized by sonochemical method using diethylenetriamine (DETA) as complexing agent. Powder XRD, Rietveld refinement, TEM and XPS studies reveal that Ti0.9Pt0.1O2 nanocrystallites crystallize in anatase structure and both Ti and Pt are in 4+ oxidation state. Due to Pt4+ ion substitution in TiO2, reducibility of TiO2 was enhanced and Ti4+ was reduced up to Ti2+ state via coupling of Pt states (Pt4+/Pt2+/Pt0) with Ti states (Ti4+/Ti3+/Ti2+). Galvanostatic cycling of Ti0.9Pt0.1O2 against lithium showed very high capacity of 430 mAhg-1 or exchange of ~1.5Li/Ti0.9Pt0.1O2 which is much higher than the highest capacity of 305 mAhg-1 or insertion of ~0.9Li/TiO2 achieved for TiO2(B) nanowires. In chapter 10, we present the conclusions and critical review on the study of transition metal and noble metal ion substituted CeO2 and TiO2.
15

Diferenciální GPS / Differential GPS

Madron, Tomáš January 2009 (has links)
This master’s thesis is the design of the system of the differential GPS, creation of the software for basic wireless communication between 2 GPS receivers, and practical tests of the designed system. Parameters and characteristics of system were determined and they should inform us better about the appropriateness of the designed system for navigation of a mobile robot in outside conditions.
16

Development of a Python Pipeline for the Analysis of Campylobacter

Zetterberg, Elvira, Andersson, Evelina, Nilsson, Alma, Qvarnlöf, Moa, Olivero, Corinne, Sulyaeva, Julia January 2022 (has links)
Statens veterinärmedicinska anstalt, SVA, is a government agency that works for better animal and human health with a primary focus on infectious animal diseases. One of their projects involves tracking the spread of Campylobacter infection in broilers and the occurrence of antimicrobial resistance in these bacteria. A pipeline was developed to contribute to making the analysis of Whole Genome Sequencing (WGS) data from Campylobacter more effective. This was done by changing the currently used pipeline’s programming language from Perl to Python and adding the possibility to run multiple analyses in parallel. With parallelization, the time for running multiple analyses was reduced compared to running them sequentially, even if it was not as fast in practice as in theory. It also did not work as well when running parallel analyses of different strains compared to identical strains. Furthermore, different attributes of the pipeline were changed or added to improve the pipeline and a database comparison was performed in order to suggest the best ones for future use. VFDB, CARD, and MEGARes were suggested as appropriate databases to use in future WGS analysis of Campylobacter. Due to a lack of resources and technical difficulties, some of the requested attributes for the pipeline could not be implemented, such as the tool Pilon and the inclusion of MLST and cgMLST analysis. Nonetheless, the pipeline is well structured, has most of the requested tools, and is easy to run. With some minor improvements, the pipeline will be a useful tool for SVA and their project.
17

Implementation of a Genome-Wide Survey of Induced Mutations to Identify Agronomically Valuable Variants in Chenopodium quinoa

Parker, Andrew Alarcon 12 April 2022 (has links)
Quinoa has been utilized for millennia in the Andes region of South America as a nutritious and hardy food crop. In recent years interest in quinoa has grown as need increases for an alternative to traditional cereal crops that can tolerate marginal environments while offering superior nutrition. Growers outside the Andes have experienced several complications adopting quinoa, including undesirable secondary metabolites, poor yield, lodging, and height inconsistency. Unfortunately, access to native ecotypes for crop improvement is limited, and desirable traits are difficult to introduce into available quinoa cultivars because of its allotetraploid genome and tendency to self-pollinate. A genome-wide survey of induced mutations in 244 sequenced M2 families was created from a bank of EMS-treated quinoa seeds and assembled into a library of mutant lineages with predicted variants and their effects on genes to assist in identifying agronomically valuable mutations in target genes as a supplement to crop improvement efforts. Using this library, eight families containing mutations in genes associated with reduced height "GAI1, GA20OX, GID1, and L " were identified. Several individuals exhibited a shorter than average phenotype; however, because each family contains thousands of EMS-induced mutations, the causative mutation of the reduced height phenotype in each family could not be definitively identified. In one family, absence of the GAI1 mutant allele, but the presence of a mutant CKX3 allele, provided a correlation between a mutation and the short phenotype. Genotyping each generation would be required for a targeted mutant allele to be tracked through selection.
18

Life in the nucleus : the genomic basis of energy exploitation by intranuclear Microsporidia

Wiredu Boakye, Dominic January 2016 (has links)
The Microsporidia are obligate intracellular parasites that have jettisoned oxidation phosphorylative capabilities during their early evolutionary history and so rely on ATP import from their host and glycolysis for their energy needs. Some species form tight associations with the host’s mitochondria and this is thought to facilitate ATP sequestration by the developing intracellular microsporidian. The human parasite, Enterocytozoon bieneusi has however lost glycolytic capabilities and may rely entirely on ATP import from its host for energy. E. bieneusi belongs to the Enterocytozoonidae microsporidian family and recent rDNA-based phylogenetic studies have suggested it has close evolutionary ties with Enterospora canceri, a crab-infecting intranuclear parasite. Such a close evolutionary relationship implied that glycolysis might also be absent in the intranuclear parasite raising questions as to how this parasite obtains energy from its unusual niche that is physically walled off from the host mitochondria, the main source of ATP in the host cell. In this study, draft genomes of four species of the Enterocytozoonidae namely, Ent. canceri, E. hepatopenaei, Hepatospora eriocheir and Hepatospora eriocheir canceri and one non-Enterocytozoonidae species, Thelohania sp. were assembled and annotated (The genome assembly of Hepatospora eriocheir was provided by Dr. Bryony Williams). Phylogenomics performed with this and publicly available genomic data confirmed the close evolutionary ties between Ent. canceri and E. bieneusi. Comparative genomic analyses also revealed that glycolysis is indeed lost in all members of the Enterocytozoonidae family sequenced in this study, hinting to the relaxation of evolutionary pressures to maintain this pathway at the base of this microsporidian family. Despite this absence, the hexokinase gene was retained in all aglycolytic genomes analysed, and that of Ent. canceri was fused to a PTPA gene. Functional assays and yeast complementation assays suggest that this chimera is able to recognise glucose as a substrate but the heterologously expressed homolog of H. eriocheir cannot. Finally, phylogenomics have been used here to demonstrate that despite the morphological differences between three Hepatospora-like organisms parasitizing different crab hosts, they are the same species. This finding adds more weight to current evidence suggesting that morphology is not an ideal marker for taxonomical classification in the Microsporidia.
19

Modélisation et validation expérimentale d'un co-électrolyseur de la vapeur d'eau et du dioxyde de carbone à haute température / Modeling and experimental validation of high temperature steam and carbon dioxide co-electrolysis

Aicart, Jérôme 03 June 2014 (has links)
Cette étude porte sur la co-électrolyse de H2O et CO2 à 800°C dans une cellule à oxydessolides. Un modèle détaillé a été développé afin de rendre compte des phénomènesélectrochimiques, chimiques, thermiques et de transferts de matière, et introduisant unereprésentation macroscopique du mécanisme de co-électrolyse. Il permet d’estimer lesperformances et les compositions en sortie de cellule. Un protocole expérimental, visant àvalider les principales hypothèses de ce modèle, a été appliqué à deux types de cellulecommerciale à cathode support. À partir de courbes de polarisations, obtenues en électrolyseet en co-électrolyse, ainsi que d’analyses gaz, les densités de courant d’échange, illustrant lescinétiques électrochimiques, ont pu être estimées, et le mécanisme proposé a pu être validé.L’analyse des simulations a permis l’identification des processus limitant la co-électrolyse, laproposition de voies d’optimisation et l’établissement des cartographies de fonctionnement. / This work investigates the high temperature co-electrolysis of H2O and CO2 in Solid OxideCells. A detailed model was developed, encompassing electrochemical, chemical, thermal andmass transfer phenomena, and introducing a macroscopic representation of the co-electrolysismechanism. This model allows predicting the performances and outlet compositions in singlecell and stack environments. An experimental validation protocol was implemented on twotypes of commercial Cathode Supported Cells, ranging from polarization curves, obtained insingle and co-electrolysis modes, to micro gas analyses. These tests aimed both at determiningthe different exchange current densities, representative of the kinetics of electrochemicalreactions, and validating the simulated cell global behavior and mechanism proposed.Comprehensive analysis of the simulations led to the identification of limiting processes andpaths for optimization, as well as to the establishment of co-electrolysis operating maps.
20

Préparation et étude de systèmes catalytiques Fe/CaO performants pour la pyrolyse/gazéification de la biomasse "Miscanthus" et la capture de CO2 / Preparation and study of efficient Fe /CaO catalytic systems for pyrolysis / gasification of biomass (Miscanthus) and CO2 capture

Zamboni-Corredor, Ingrid-Rocio 22 July 2013 (has links)
Améliorer la production en hydrogène dans les procédés de conversion des ressources renouvelables telles que la biomasse est un réel challenge dans le contexte de la production d’énergie propre et efficace. En effet, dans le procédé de conversion de la biomasse par vapogazéification, l’hydrogène est produit avec de quantités importantes de CO2, de CH4 et des molécules aromatiques lourdes, toxiques et complexes appelées goudrons. Ce travail s’intéresse à la production d’hydrogène par vaporeformage des goudrons avec capture in-situ de CO2 dans les procédés de vapogazéification de la biomasse. Nous proposons un système catalytique bifonctionnel de type Fe/CaO-Ca12Al14O33 dans lequel le fer est actif pour la production d’H2 tandis que la phase absorbante CaO-Ca12Al14O33 capture le CO2, ces deux processus se font simultanément dans un réacteur à lit fixe. Ce travail a permis de développer un système de type CaOCa12Al14O33/ olivine adapté pour la gazéification de la biomasse « Miscanthus » dans un réacteur à lit fluidisé. / Improve the hydrogen production from the conversion of renewable resources such as biomass is a real challenge in the context of the production of clean and efficient energy. In fact, during the biomass steam gasification, hydrogen is produced with significant amounts of CO2, CH4 and heavy, toxic and complex aromatic molecules called tars. This work focuses on the production of hydrogen by steam reforming of tar with in-situ CO2 capture. We propose a catalytic bi-functional material Fe/CaO-Ca12Al14O33 where iron favors the H2 production and simultaneously the CaO-Ca12Al14O33 capture CO2 in a fixed bed reactor. This work led also to the development of a CaOCa12Al14O33/ olivine system adapted for biomass gasification "Miscanthus" in a fluidized bed reactor.

Page generated in 0.0525 seconds