• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 57
  • 57
  • 19
  • 17
  • 12
  • 11
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Feedstock and process variables influencing biomass densification

Shaw, Mark Douglas 17 March 2008 (has links)
Densification of biomass is often necessary to combat the negative storage and handling characteristics of these low bulk density materials. A consistent, high-quality densified product is strongly desired, but not always delivered. Within the context of pelleting and briquetting, binding agents are commonly added to comminuted biomass feedstocks to improve the quality of the resulting pellets or briquettes. Many feedstocks naturally possess such binding agents; however, they may not be abundant enough or available in a form or state to significantly contribute to product binding. Also, process parameters (pressure and temperature) and material variables (particle size and moisture content) can be adjusted to improve the quality of the final densified product.<p>Densification of ground biomass materials is still not a science, as much work is still required to fully understand how the chemical composition and physical properties, along with the process variables, impact product quality. Generating densification and compression data, along with physical and mechanical properties of a variety of biomass materials will allow for a deeper understanding of the densification process. This in turn will result in the design of more efficient densification equipment, thus improving the feasibility of using biomass for chemical and energy production.<p>Experiments were carried out wherein process (pressure and temperature) and material (particle size and moisture content) variables were studied for their effect on the densification process (compression and relaxation characteristics) and the physical quality of the resulting products (pellets). Two feedstocks were selected for the investigation; namely, poplar wood and wheat straw, two prominent Canadian biomass resources. Steam explosion pretreatment was also investigated as a potential method of improving the densification characteristics and binding capacity of the two biomass feedstocks.<p> Compression/densification and relaxation testing was conducted in a closed-end cylindrical die at loads of 1000, 2000, 3000, and 4000 N (31.6, 63.2, 94.7, and 126.3 MPa) and die temperatures of 70 and 100°C. The raw poplar and wheat straw were first ground through a hammer mill fitted with 0.8 and 3.2 mm screens, while the particle size of the pretreated poplar and wheat straw was not adjusted. The four feedstocks (2 raw and 2 pretreated) were also conditioned to moisture contents of 9 and 15% wb prior to densification. <p> Previously developed empirical compression models fitted to the data elucidated that along with particle rearrangement and deformation, additional compression mechanisms were present during compression. Also, the compressibility and asymptotic modulus of the biomass grinds were increased by increasing the die temperature and decreasing product moisture content. While particle size did not have a significant effect on the compressibility, reducing it increased the resultant asymptotic modulus value. Steam explosion pretreatment served to decrease the compressibility and asymptotic modulus of the grinds.<p>In terms of physical quality of the resulting product, increasing the applied load naturally increased the initial density of the pellets (immediately after removal from the die). Increasing the die temperature served to increase the initial pellet density, decrease the dimensional (diametral and longitudinal) expansion (after 14 days), and increase the tensile strength of the pellets. Decreasing the raw feedstock particle size allowed for the increase in initial pellet density, decrease in diametral expansion (no effect on longitudinal expansion), and increase in tensile strength of the pellets. Decreasing the moisture content of the feedstocks allowed for higher initial pellet densities, but also an increased dimensional expansion. The pretreated feedstocks generally had higher initial pellet densities than the raw grinds. Also, the pretreated feedstocks shrank in diameter and length, and had higher tensile strengths than the raw feedstocks. The high performance of the pretreated poplar and wheat straw (as compared to their raw counterparts) was attributed to the disruption of the lignocellulosic structure, and removal/hydrolysis of hemicellulose, during the steam pretreatment process which was verified by chemical and Fourier transform infrared analysis. As a result, a higher relative amount of lignin was present. Also, the removal/hydrolysis of hemicellulose would indicate that this lignin was more readily available for binding, thus producing superior pellets.
12

Twin screw extrusion pre-treatment of wheat straw for biofuel and lignin biorefinery applications

Ng, Thian Hong January 2013 (has links)
Pre-treatment of wheat straw(lignocellulosic) biomass is a crucial step as it has direct impact on the subsequent yield of enzymatic saccharification and alcohol fermentation processes in the production of biofuel. Twin screw extrusion is a highly feasible pretreatment method and has been received great interest in the recent year pre-treatment studies. Twin screw extrusion is a continuous process, where the biomass feedstock can be subjected to a combination of simultaneous physical, thermal and chemical treatments. Steam explosion is a batch process and is the most commonly used method for lignocellulosic pre-treatment. In the initial stage of this study, the yield of glucose obtained from enzymatic saccharification for both methods (extrusion and steam explosion) were compared to identify the most effective pre-treatment approach. Effectiveness of the conventional steam explosion pre-treatment was used as benchmark for the directions of development of effective extrusion fractionation for wheat straw. In subsequent study, the impact of physical operating parameters (moisture, barrel temperature, compaction, screw speed and size reduction before extrusion) over twin screw extrusion with and without NaOH were studied. Low temperature (50°C) and increased moisture extrusion were preferred extrusion conditions. Yield of glucose can be improved by addition of NaOH (0.04g / g straw) and barrel temperature profile optimisation. Post extrusion washing was recommended. Findings from FTIR and TGA help to understand the chemical and structural changes took place in the pre-treatment and can be correlated with the glucose yield at the end of enzymatic hydrolysis. Characterisation analysis was extended to FT-NIR, morphology, crystallinity and specific surface area analysis to analyse the structural changes of lignocellulose biomass in extrusion pre-treatment and correlation with glucose yield. Chemometric analysis was used to statistically process large amounts of spectral data. The PCA scores plots showed good cluster segregation of the samples and were thus able to distinguish the effects of different pre-treatment conditions. The PLS regression models for both FTIR and FT-NIR showed good statistical regression and predictive ability correlated to the glucose yield. For the lignin ultilisation study, crude lignin was recovered from black liquor and fractionated with solvents. Lignin and the fractions were characterised with solvent solubility, SEC, UV, FTIR, 1H and 13C NMR and evaluated for the antioxidant activity with AAI ranged from 0.3 to 2.4. Reason for the low performance was proposed and experiment was extended to the intended application performance screening. Lignin application study was further extended to assess the feasibility of using lignin as an antioxidant in carboxylated acrilonitrile-butadiene rubber, XNBR glove. Evaluation involved physical observation, mechanical properties and thermal analysis – DSC-OIT after incorporation of lignin into XNBR glove. Lignin antioxidant performance was compared with current chemical antioxidant in used in industry. A part from antioxidant behaviour, lignin was also found can enhance the softness of XNBR film after accelerated heat aging.
13

Mechanical Behaviour, Water Absorption and Morphology of Wheat Straw, Talc, Mica and Wollastonite filled Polypropylene Composites

Mohan Sharma, Arathi January 2012 (has links)
Polypropylene continues to be the mainstream choice thermoplastic for automotive applications. In many applications PP is filled with mineral fillers for improvement of properties. Biobased natural fillers or fibres are attractive materials to reduce the weight because of the low specific gravity of the biobased materials compared to the mineral fillers. Our group has done extensive research on the development of wheat straw fiber in thermoplastics in the past years. It is very important to understand the behaviour of single fillers on composites before studying the effects of mixing fillers or fibers (hybridization). The objective of this study is to evaluate and compare systematically the effects of wheat straw and mineral fillers in the polypropylene matrix. The study includes two types of wheat straw (WS) categorized based on their size (fine WS and medium WS) and three different types of natural minerals (Talc, Mica and Wollastonite). Three types of polypropylene (PP), Homopolymer PP, High Impact Copolymer PP and Homopolymer-Copolymer Blend PP, were investigated as the matrix. This study also evaluates the effect of combining two fillers (WS and mineral filler) in the hybrid composite. The fillers were formulated in three different percentages (20, 30 and 40wt %) and compounded via extrusion. Samples for all formulations were prepared by injection molding. The mechanical properties (flexural modulus and strength, tensile modulus and strength, impact strength), water absorption and density were measured. The properties of hybrid composites were evaluated by varying the amounts of two fillers at 10wt%-20wt%, 15wt%-15wt% and 20wt%-10wt% each, keeping the overall filler content constant at 30wt%. The effect of type of filler, filler size and filler content were critical in this work. The results obtained from this study indicated that filler type and filler content greatly influenced the mechanical properties and water absorption characteristics of the composites. The flexural modulus increased with increasing filler content. It was interesting to observe that though the impact strength decreased with the addition of fillers, increasing the filler content from 20 to 40 wt% did not affect the property. With respect to all fillers, wollastonite improved the mechanical properties significantly. Increasing the amount of WS content reduced the composite’s resistance to water absorption. Among mineral fillers, mica showed significantly higher percentage gain in weight with water absorption. Combination of fillers at varying percentages did not have any synergy effect on the mechanical behaviour of the composite. The percentage increase in weight with water absorption was observed to be increasing with increasing WS content in hybrid composites, but significantly lower than pure WS composites. The morphological study on WS composites revealed improved interaction of filler with homopolymer and polypropylene blend.
14

Product Design of Wheat Straw Polypropylene Composite

Fatoni, Rois January 2012 (has links)
The use of wheat straw and other agricultural by-product fibers in polymer composite materials offers many economical and environmental benefits. Wheat straw has been recently commercialized as new filler for polypropylene thermoplastic composites in automotive applications. However, to expand its application in the automotive industry and other sectors where highly-engineered materials are needed, a systematic database and reliable composite property models are needed. For this purpose, this research was systematically conducted. A product design approach is used in studying wheat straw polypropylene (WS-PP) composite. A set of thermoplastic composite specifications relevant to several automotive parts was used as a basis for the customer needs which give the direction to the entire product design of thermoplastic composites based on polypropylene and straw. Straw fibers were produced by grinding and sieving (without any other treatment). These fibers were used in the formulation of polypropylene thermoplastic composites to understand the variable that can contribute to minimize production cost, maximize product performance and maximize wheat straw utilization (fraction of renewable material). The variation in chemical composition due to plant variety (parts of the plant, location of harvesting and seasonality), the bonding incompatibility between hydrophobic polypropylene matrix and hydrophilic straw fiber, along with the heterogeneity of fiber size and shape, has made wheat straw polypropylene composite a complex system. This complexity causes the mechanistic approach of composite modeling in the well-established composite theory difficult to be applied, since modeling the contribution of natural fibers to the performance of thermoplastic composites is not as straightforward like in the case of homogenous glass fiber (with same shape, diameter and narrow length distribution). Alternatively, a statistical approach of modeling by using designed experiments was used in this research. The Mixture and Process-Mixture Experimental Design methodologies were applied to develop response surface models that can be used to correlate input properties and formulation of these thermoplastic composites to the final properties of the product. The models obtained can then be inverted to predict the required properties and formulations using fiber (straw), matrix (polypropylene), and additives (coupling agent) as the main components for a specified product performance. The prediction includes the fiber grading (size and aspect ratio) and classification in order to maximize fiber utilization for different needs of composite products. The experiments were designed based on the analysis of the existing data provided by previous research works of wheat straw polypropylene composite system in our laboratory and by experimental data generated during this research. The focus of the analysis was the determination of the factor(s), i.e., the independent variables of the experiments and their acceptable levels. The response variables being measured were chosen based on the required specifications of targeted products. A constrained three-component mixture design of experiment was conducted to develop models for flexural properties of WS-PP composite. The three independent mixture variables in this experiment were the weight proportions of: straw (as fiber), polypropylene (as matrix), and maleic anhydride polypropylene (as coupling agent). Statistical analysis results showed that the obtained models have met standard requirements of response surface models with good predictive capability. One of the important finding of this study was the formulation for optimum coupling agent proportion which gives the best flexural properties of composite. The effect of straw fiber size on composite properties was investigated by using fiber length and aspect ratio as parameters to describe fiber size, instead of the size of sieves used in fiber preparation. Two-stage separation method was applied in the straw fiber preparation process. In this method, width-based separation was followed by length-based separation to obtain fiber fractions with distinct fiber length and aspect ratio. Samples of thermoplastic composites for measurement of physical properties were produced from each fiber factions at two different levels of fiber loading. The samples were compounded by twin-screw extrusion and specimens were prepared by injection molding. The fibers were then extracted from the samples after injection molding (using solvent) and their sizes were measured to investigate the fiber size reduction during the compounding and molding process. A comprehensive analysis was then performed to study the responses of stiffness, impact resistance and specific properties of these composites by including initial fiber sizes, fiber chemical compositions (measured as cellulose, hemi-cellulose and lignin), fiber size reduction during compounding/molding process, and fiber loading as factors. One of the important contributions of this study is fiber grading in terms of their sizes and their respective contributions to the final composite product properties. Based on the previous results, a mixture design of experiment was performed on wheat straw – polypropylene / impact copolymer polypropylene (WS-PP/ICP) composite system. The objective of the experiment was to obtain response surface models that can be used to estimate some important properties required by a set of automotive product specifications. The optimum formulation of coupling agent obtained in the previous study was used to determine the fixed recipe of coupling agent; simplifying the composite system into a three-component mixture, i.e. straw (as fiber) and polypropylene (homopolymer and impact copolymer (polypropylene blend as matrix). Simulation of the models shows the superiority of using a blend of polypropylenes to balance the stiffness and impact strength of the composites and being able to reach three targeted product specifications. A case study was also performed to demonstrate that the models can be used to find optimum formulations to minimize material cost while meeting specifications of all targeted products. Finally, a framework for wheat straw polypropylene product design and development is presented in this thesis. The framework can be used for designing polypropylene-straw thermoplastic composites with various combinations of fiber - polymer matrix - additive systems with different product attributes and specifications suitable for several applications in the automotive industry.
15

Developing a continuous bisulfate postsulfonation process for the black liquor from soda pulping of wheat straw /

Mao, Jingliang. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves ).
16

Aggregated understanding of characteristics of wheat straw node and internode with their interfacial bonding mechanisms

Ghaffar, Seyed Hamidreza January 2016 (has links)
The demand for the efficient utilisation of straw biomass requires detailed analyses of its fundamental chemical structures, morphological complexity, individual cell wall components and the correlation of physicochemical to mechanical properties. The study involved two main areas: understanding the details of microstructure and characterisation/differentiation of properties of various profiled wheat straw. Comprehensive and systematic experimental programmes were therefore designed in order to thoroughly investigate the node and internode of wheat straw with quantitative appraisals and qualitative interpretations. This could contribute towards its valorisation in bio-refinery pathways. The sophisticated morphology of node and internode, inner and outer surface was investigated. It was found that the morphology across node area has a great variety when the longitudinal profile is investigated in the upwards direction to grain head. A 3D image of nodes illustrated the dense core with elliptical shaped rings organised in order to provide the echanical strength to the overall stem. The variation of cell wall composition across wheat straw node and internode showed that node yielded slightly higher Klason lignin, extractives and ash content than internode, which could be related to their morphology, precisely the higher ash and extractives content in the node are explained by thicker epidermis tissue. The physicochemical and mechanical properties of node and internode were differentiated and the effects of a combination of mild physical pre-treatment were monitored. The results indicated: i) the reduction of waxes from the outer surface, ii) significantly lower (P < 0.05) extractives and iii) the dissolution of silicon (Si weight %) on the outer surface of node and internode. The tensile strength of nodes and internodes after pre-treatments also resulted in a significant increase (P < 0.05). The accumulated characteristic data enabled the investigation of interfacial properties and bonding mechanisms of the inner and outer surface of wheat straw with thermosetting resins. Different surface functionalities and anatomical sections, altered the bonding performance, i.e. waxes and silica concentrated on the outer surface inhibited the quality of the interface. Nevertheless, the treatment improved interface (P < 0.05) between resins and the micro-porous surface of wheat straw by causing the microcellular structure of straw to expand and hence inspire the mechanical entanglement on a micro level upon resin solidification.
17

Science and efficacy of mild sodium hydroxide treatments in enzyme-based wheat straw-to-glucose processing

Sophonputtanaphoca, Supaporn 27 April 2012 (has links)
The work described in this dissertation focused on chemistry related to the use of aqueous sodium hydroxide as a treatment in the processing of wheat straw. A major emphasis was the comprehensive evaluation of straw component partitioning due to sodium hydroxide (NaOH) processing. This was evaluated over a range of NaOH concentrations (0­‐10%, w/v), all at 50°C, 5 h treatment period, and 3% solid loading. Solid and liquid phases resulting from NaOH treatments were evaluated. Total solids recovered in the NaOH­‐treated solid phase ranged from 47.4­‐88.0%. Overall carbohydrate recovery in the combined solid and liquid phases was negatively correlated with the alkali concentration of the treatment liquor. The glucan content of the NaOH‐treated solid phase ranged from 37.2­‐67.4%. Glucan recovery in the solid phase was relatively high in all cases, the minimum value being ~98%. Increasing amounts of xylan partitioned into the liquid phase as sodium hydroxide concentrations increased – it ranged from 31­‐83% of the xylan being recovered in the soluble phase. Carbohydrate analyses of the pretreated liquor revealed that the majority of carbohydrate loss from the solid fraction could be recovered in the liquid phase in form of oligomers and monomers due to alkaline degradation. The interconversion of glucose, fructose, and mannose under the alkaline condition played an important role in the presence of those sugars. Increase in NaOH concentration contributed to increase in amount of cellulose­‐derived and hemicellulose‐derived oligomers in the pretreated liquor. All oligomers except fructooligomers in NaOH pretreated liquor were higher than those found in water extraction at 50°C, 5 h. Total carbohydrate recovery from the solid and liquid fractions was as high as 99% for glucose and glucan in 5% NaOH treatment and 80‐95% for xylose and xylan in 1-­10% NaOH treatment. The presence of NaOH as extraction reagent dramatically induced lignin and ash removal from the pretreated solid with up to 63% acid insoluble lignin (AIL) and 87% ash extraction. Solid fractions resulting from NaOH pretreatments (up to 5% NaOH) were tested for their susceptibility to enzymatic saccharification using cellulase and cellulase/xylanase enzyme preparations. The cellulase/xylanase enzyme preparation was found to be more effective at cellulose saccharification than the cellulase enzyme preparation alone. Maximum glucose yield, which corresponded to the 5% NaOH treatment, was 82% over the standard 48 h saccharification period. Extended saccharifications times to 120 h showed that the conversion yield approached 90%. Sequential treatments of the straw (i.e. initial alkali treatment – first enzyme saccharification – second alkali treatment ‐ second enzyme treatment) revealed the NaOH treatment has the potential to render essentially all (~99%) of the straw glucan susceptible to enzyme saccharification. This suggests that the layered molecular arrangement of cellulose, hemicellulose, and lignin in the cell wall impacts biomass recalcitrance and glucan conversion yield. The other major focus of this dissertation research was the characterization of alkali neutralization, which occurs during the aqueous alkali processing of wheat straw. The approach taken was to evaluate the time course of alkali uptake and to determine the underlying nature of alkali uptake. The knowledge generated from this study is useful for understanding the nature of the alkali‐induced chemistry that is at the heart of alkali processing of agricultural byproducts, foods, and forest products. Alkali uptake/acid generation measurements were monitored for wheat straw suspensions at pH 11 and 30°C. The first phase of alkali uptake corresponded to the 30‐second time period over which the pH of the wheat straw suspension was adjusted from its original pH (~6.6) to pH 11. Alkali neutralization during this period was attributed to the instantaneous ionization of solvent accessible Bronstad acids. Following pH adjustment to 11.0, the time course of subsequent alkali uptake was recorded. The time course appeared biphasic. The early phase, which corresponded to the relatively rapid uptake of alkali, was evident during the first 24 hours. The later phase, which was characterized by the relatively slow uptake of alkali, was maintained for the length of the study (up to 96 hours). Alkali uptake during the early phase of the time course appears to be determined by the rate of hydrolysis of readily accessible esters – primarily acetic acid esters (acetyl groups). Alkali uptake during the later phase of the time course appears to be impacted by the rate of alkali penetration into the straw and the rate of production of alkali‐induced acid degradation products. The uptake of alkali in the pH adjustment phase was ~ 120 μEq per gram wheat straw, the uptake of alkali in the early phase of time course was ~ 1,064 μEq per gram wheat straw, and the rate of uptake in the later phase of the time course 6.10 μEq per gram wheat straw per hour. Amount of acetyl groups, ferulic acid, and p-­coumaric acid generated during 96-­h pretreatment revealed that they are major esters being hydrolyzed under the studied condition. Combined, these ester-­derived acids contributed up to ~ 28% of overall alkali uptake. In addition, alkaline degradation products quantified in this study showed additional ~ 28% contribution to the overall alkali uptake. / Graduation date: 2012
18

Development of Methodologies for Improving Thermal Stability of Plant Fiber for Application in Thermoplastic Composites

Vedoy, Diogenes 13 December 2012 (has links)
Thermal degradation during composite fabrication is the main impediment for the wide use of agro-based fibers as filler and reinforcement in engineering thermoplastic composites. Different thermal, chemical and physical techniques (e.g., alkali, steam explosion and retting) aiming to increase the fiber-matrix adhesion or reduce the plant fibers water absorption have been presented in the literature. However, there have been very few attempts to solve the difficulties associated with processing engineering thermoplastics with plant fibers. Most of these attempts involved the use of additives (such as plasticizers and salts) to lower the polymers processing temperature and plant fibers with inherent higher thermal stability (such as Curaua and cellulose). Despite all these efforts, no important progress has been achieved. Therefore, to explore the full potential of wheat straw and expand its use in commercial applications, an experimental study was carried out to develop different methodologies to improve the thermal stability of wheat straw fiber. In this thesis, most attention is given to wheat straw because of the relevance and potential of entering the market as commercial filler today. It is reported here that the thermal stability and chemical composition of wheat straw do not seem to significantly vary with wheat straw type and cultivation region. For example, the main thermal degradation of wheat straw samples starts in a narrow window of temperature which goes from 220.8 to 237.8 °C and from 224.8 to 238.1 °C for air and nitrogen atmospheres, respectively. On the other hand, lignin and inorganic materials are the wheat straw components with the highest relative variation. In addition, it is showed here that silane modification is an efficient method to increase the temperature of degradation of wheat straw. The highest improvements were achieved with chlorosilane modifiers and combinations of alkoxysilane and chlorosilane modifiers. In fact, the silane treated samples have lower thermal degradation during the fabrication of composites with polyamide-6. It is observed here that the extruded and injection molded composites containing silane treated wheat straw samples have significant smaller thermal degradation than those utilizing untreated wheat straw samples. Equally important, it seems that the mechanical properties of the composites are not affected by the addition of silane treated samples in comparison with untreated wheat straw. In addition, another efficient treatment method is presented in this thesis. This method employs ultraviolet light to modify and improve the thermal stability of wheat straw. This method offers important economical and environmental benefits. Significant improvements (e.g., 40 ºC increase on the temperature at 2% of weight loss) were achieved after treatment for short periods of time (up to 15 minutes) and without the use of any pre-treatment or production of toxic by-products. This treatment method represents a novel application for ultraviolet light with potential for industrial use.
19

Development of Methodologies for Improving Thermal Stability of Plant Fiber for Application in Thermoplastic Composites

Vedoy, Diogenes 13 December 2012 (has links)
Thermal degradation during composite fabrication is the main impediment for the wide use of agro-based fibers as filler and reinforcement in engineering thermoplastic composites. Different thermal, chemical and physical techniques (e.g., alkali, steam explosion and retting) aiming to increase the fiber-matrix adhesion or reduce the plant fibers water absorption have been presented in the literature. However, there have been very few attempts to solve the difficulties associated with processing engineering thermoplastics with plant fibers. Most of these attempts involved the use of additives (such as plasticizers and salts) to lower the polymers processing temperature and plant fibers with inherent higher thermal stability (such as Curaua and cellulose). Despite all these efforts, no important progress has been achieved. Therefore, to explore the full potential of wheat straw and expand its use in commercial applications, an experimental study was carried out to develop different methodologies to improve the thermal stability of wheat straw fiber. In this thesis, most attention is given to wheat straw because of the relevance and potential of entering the market as commercial filler today. It is reported here that the thermal stability and chemical composition of wheat straw do not seem to significantly vary with wheat straw type and cultivation region. For example, the main thermal degradation of wheat straw samples starts in a narrow window of temperature which goes from 220.8 to 237.8 °C and from 224.8 to 238.1 °C for air and nitrogen atmospheres, respectively. On the other hand, lignin and inorganic materials are the wheat straw components with the highest relative variation. In addition, it is showed here that silane modification is an efficient method to increase the temperature of degradation of wheat straw. The highest improvements were achieved with chlorosilane modifiers and combinations of alkoxysilane and chlorosilane modifiers. In fact, the silane treated samples have lower thermal degradation during the fabrication of composites with polyamide-6. It is observed here that the extruded and injection molded composites containing silane treated wheat straw samples have significant smaller thermal degradation than those utilizing untreated wheat straw samples. Equally important, it seems that the mechanical properties of the composites are not affected by the addition of silane treated samples in comparison with untreated wheat straw. In addition, another efficient treatment method is presented in this thesis. This method employs ultraviolet light to modify and improve the thermal stability of wheat straw. This method offers important economical and environmental benefits. Significant improvements (e.g., 40 ºC increase on the temperature at 2% of weight loss) were achieved after treatment for short periods of time (up to 15 minutes) and without the use of any pre-treatment or production of toxic by-products. This treatment method represents a novel application for ultraviolet light with potential for industrial use.
20

Evaluation of ammoniated wheat straw in receiving and growing diets

Schlegel, Ethan R. January 1900 (has links)
Master of Science / Department of Animal Sciences and Industry / Dale A. Blasi / Drought conditions in the past have created a shortage of prairie hay and other grass hays that are used as roughage sources for receiving and growing beef diets. Historically, wheat straw and other cereal crop residue has been discounted as a feedstuff due to its low nutrient content. Chemical methods, including ammonia application, can improve the feeding value of cereal crop residue while constraining costs. While there are studies that show the efficacy of utilizing ammoniated wheat straw in beef cow and maintenance diets, limited data are available characterizing the feeding value of ammoniated wheat straw in receiving and growing diets. The objective of these two studies were to evaluate cattle growth and diet digestibility for receiving and growing diets containing either wheat straw (STRW), anhydrous ammonia treated wheat straw (AMMN), or a prairie hay and alfalfa blend (CONT) at 30% inclusion. Exp. 1 utilized 288 crossbred steers (271 kg) randomized to 8 pens per treatment and fed their respective test diets for 56 d and a common diet for 14 d to equalize gastrointestinal tract fill. No effect of straw ammoniation was observed on final bodyweight (BW), average daily gain (ADG), dry matter intake (DMI), or gain to feed (G:F) (P > 0.31). The 56-d BW, ADG, and G:F for CONT were significantly different from both STRW and AMMN (P < 0.001). Exp. 2 utilized 6 ruminally fistulated Holstein heifers (288 kg) in a replicated 3 × 3 Latin square design. There were no observed differences between AMMN and STRW in dry matter (DM), organic matter (OM), or ADF intake (P > 0.57) although CONT differed significantly from both straw treatments in DM, OM, and ADF intake (P < 0.05). Digestibility of DM, OM, and ADF were not different between AMMN and STRW (P > 0.43), where as CONT and STRW were different (P < 0.05). Anhydrous ammonia treatment of wheat straw had no effect on ruminal VFA concentration (P > 0.32). Ruminal pH was not affected by anhydrous ammonia application (P = 0.32), but STRW and CONT were different (P < 0.05). Fluid passage rate was not different among the three treatments (P = 0.33). Wheat straw is a suitable replacement for ammoniated wheat straw at 30% inclusion in receiving and growing diets that contain 40% of dietary DM as wet corn gluten feed. Further research is necessary to determine the effect of varying levels of wheat straw and ammoniated wheat straw in conjunction with wet corn gluten feed and other by-product feeds in receiving and growing diets in order to capitalize on performance and efficiency gains while constraining costs.

Page generated in 0.058 seconds