• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 57
  • 57
  • 19
  • 17
  • 12
  • 11
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Impact of type and pretreatment of lignocellulosics on lignin and pulp properties

Roßberg, Christine 18 April 2016 (has links) (PDF)
The depletion of fossil fuels and the need to deal with climate change lead to an increasing interest in renewable resources. Lignocellulosic biomass in general, and agricultural residues in particular, could serve as an excellent starting material for the production of cellulose, basic chemicals, lignin and bioethanol in a biorefinery framework as they are abundant, do not compete with food production and are distributed worldwide. Two factors considerably influence the composition and properties of biorefinery products: biomass feedstock and pretreatment process. Their influence on the separability of raw material into a carbohydrate and lignin fraction as well as the composition and properties of these products are objectives of this study. Hereby, the focus is on lignin, as its structure is particularly dependent on the aforementioned factors complicating its further utilisation. Different agricultural biomass namely barley straw, coconut shell powder, hemp shives, horse manure, maize straw, miscanthus, oat husk, pretreated alfalfa, rape straw, sunflower stalks, tomato stalks and wheat straw were investigated regarding their suitability for lignocellulose separation using alkaline soda pulping. Best separation into a carbohydrate and lignin fraction was achieved for pretreated alfalfa, miscanthus, wheat and barley straw. The purity of the obtained lignin fractions varied in the wide range of 57% klason-lignin content for sunflower stalks and 81% for pretreated alfalfa prior to further purification by dialysis. Lignin fractions were characterised by means of FTIR spectroscopy, elementary analysis, thioacidolysis, size-exclusion-chromatography, thermodesorption, differential scanning calorimetry and different wet chemical methods for determination of functional groups. Lignins could be classified into groups, within which they show similar characteristics: (A) horse manure, rape straw, (B) sunflower stalks, tomato stalks, (C) barley-, maize- and wheat straw and (D) hemp shives, miscanthus. In addition, promising lignin candidates were found for several applications. Thus, by screening different agricultural residues, it is possible to choose a specific raw material, in order to produce lignin with desired properties and functionalities. The effect of the pretreatment process was studied based on wheat straw. It was subjected to conventional alkaline pulping, microwave-assisted alkaline pulping and organosolv pulping using formic acid and hydrogen peroxide. Pulping parameters were varied in order to attain best possible separation into a carbohydrate and lignin fraction. Of the varied parameters the concentration of both sodium hydroxide and formic acid has the highest impact on yield and purity of the products for alkaline and organosolv pulping, respectively. It additionally influences the content of functional groups of the lignin fraction and is hence, an important parameter for lignin customisation for subsequent utilisation. Furthermore, the possibility of reducing pulping time by using microwave-assisted pulping instead of conventional alkaline pulping is promising, as the obtained carbohydrate fraction has a low intrinsic viscosity, which may enhance enzymatic hydrolysis.
32

Využití odpadů z potravinářských výrob / The employment of wastes from food production

Hurčíková, Andrea January 2008 (has links)
The waste from agricultural and food industry are accessible in large quantity anywhere in the whole world nowadays. Most of these wastes include cellulose (30 - 40 %), hemicellulose (20 - 40 %) and lignine (10 - 20 %). Therefore these waste materials have wide use as the substrates for the microbial growth and the production of the enzymes. The microorganisms are able to use organic compounds from the wastes as the source of energy for the growth and carbon for synthesis of cellular biomass [24]. Wheat and rice straw are possible to use as the substrates for cultivation of the microorganisms and following production of the enzymes. In this thesis the utilization of the wastes from food industry for the production of the enzymes by the microorganisms was studied. We observed utilization of wheat straw as source of energy for growth of tested microorganisms and investigated their ability for the production of oxidoreductase (laccase). The optimalization of growth conditions of Aureobasidium pullulans was proceeded. Further the activity of laccase was studied. Milled wheat straw was used as the substrate. The cultivation was done in the thermoregulator at the temperature of 27°C. The activity of laccase was not found in this thesis. Petri dishes were contaminated by three unknown microoganisms during optimalization of growth of Aureobasidium pullulans. One of them produced laccase in cultivation with straw.
33

Impact of type and pretreatment of lignocellulosics on lignin and pulp properties

Roßberg, Christine 05 April 2016 (has links)
The depletion of fossil fuels and the need to deal with climate change lead to an increasing interest in renewable resources. Lignocellulosic biomass in general, and agricultural residues in particular, could serve as an excellent starting material for the production of cellulose, basic chemicals, lignin and bioethanol in a biorefinery framework as they are abundant, do not compete with food production and are distributed worldwide. Two factors considerably influence the composition and properties of biorefinery products: biomass feedstock and pretreatment process. Their influence on the separability of raw material into a carbohydrate and lignin fraction as well as the composition and properties of these products are objectives of this study. Hereby, the focus is on lignin, as its structure is particularly dependent on the aforementioned factors complicating its further utilisation. Different agricultural biomass namely barley straw, coconut shell powder, hemp shives, horse manure, maize straw, miscanthus, oat husk, pretreated alfalfa, rape straw, sunflower stalks, tomato stalks and wheat straw were investigated regarding their suitability for lignocellulose separation using alkaline soda pulping. Best separation into a carbohydrate and lignin fraction was achieved for pretreated alfalfa, miscanthus, wheat and barley straw. The purity of the obtained lignin fractions varied in the wide range of 57% klason-lignin content for sunflower stalks and 81% for pretreated alfalfa prior to further purification by dialysis. Lignin fractions were characterised by means of FTIR spectroscopy, elementary analysis, thioacidolysis, size-exclusion-chromatography, thermodesorption, differential scanning calorimetry and different wet chemical methods for determination of functional groups. Lignins could be classified into groups, within which they show similar characteristics: (A) horse manure, rape straw, (B) sunflower stalks, tomato stalks, (C) barley-, maize- and wheat straw and (D) hemp shives, miscanthus. In addition, promising lignin candidates were found for several applications. Thus, by screening different agricultural residues, it is possible to choose a specific raw material, in order to produce lignin with desired properties and functionalities. The effect of the pretreatment process was studied based on wheat straw. It was subjected to conventional alkaline pulping, microwave-assisted alkaline pulping and organosolv pulping using formic acid and hydrogen peroxide. Pulping parameters were varied in order to attain best possible separation into a carbohydrate and lignin fraction. Of the varied parameters the concentration of both sodium hydroxide and formic acid has the highest impact on yield and purity of the products for alkaline and organosolv pulping, respectively. It additionally influences the content of functional groups of the lignin fraction and is hence, an important parameter for lignin customisation for subsequent utilisation. Furthermore, the possibility of reducing pulping time by using microwave-assisted pulping instead of conventional alkaline pulping is promising, as the obtained carbohydrate fraction has a low intrinsic viscosity, which may enhance enzymatic hydrolysis.
34

Saccharification of lignocellulose

Warsame, Mohamed January 2012 (has links)
Den ökande efterfrågan på energi och den förväntade nedgången i råoljeproduktion har lett till ett enormt sökande efter nya energikällor.Cellväggen i växter består till stor del av lignocellulosa som i sin tur innehåller cellulosa och hemicellulosa. Dessa polysackarider är av stor betydelse för sökandet efter förnyelsebar energi.Cellväggen måste förbehandlas innan den kan brytas ner till enkla sockerarter. Efter nedbrytning kan monosackariderna användas till produktion av etanol eller biogas genom väl etablerade fermenteringstekniker. Syftet med denna studie var att jämföra och utvärdera några metoder som används vid degradering av lignocellulosa. Tre behandlingar har jämfört för att se vilken som ger mest avkastning i form av monosackarider. Vetehalm användes som substrat och hydrolyseras med hjälp av tre kommersiella enzymblandningar. Proverna förbehandlades före den enzymatiska reaktionen med antingen mikrovågor eller ångexplosion.Resultaten visade att en behandling med mikrovågsbestrålning eller ångexplosion kombinerad med enzymhydrolys gav högst avkastning. De slutsatser som kan dras är att en mekanisk förbehandling ökar utbytet drastiskt men är otillräcklig i sig. Ytterligare enzymatisk behandling är nödvändig att erhålla större mängder enkla sockerarter från lignocellulosa. / The increasing energy demand and the anticipated decline in crude oil production has led to an immense search for new energy sources. Plant cell walls contain lignocellulose that conserve great amounts of energy. These polysaccharides are of high importance for the search of renewable energy sources. Pretreatment of the cell wall is necessary in order to hydrolyse it to its component sugars. Once degraded to monomeric sugars it can be fermented to either ethanol or biogas through established fermentation technologies.The aim of this thesis was to compare and evaluate some of the methods used for sacchrification of lignocellulose. Three treatments where compared to determine which is highest yielding. These are enzymatic hydrolysis, microwave irradiation and steam explosion.Wheat straw was used as substrate and hydrolysed by three commercial enzyme mixtures. Samples were pretreated before the enzymatic reaction with either microwave or steam explosion. Results showed that a treatment of either microwave irradiation or steam explosion combined with enzyme hydrolysis gives the highest yield in monomeric sugars. The conclusions that can be drawn are that mechanical pretreatment increases yield drastically but is insufficient in its self. Further enzymatic treatment of wheat straw is necessary to obtain high amounts of simple sugars.
35

De l'extraction de la lignine à sa valorisation / From lignin extraction to its valorization

Constant, Sandra 27 September 2012 (has links)
L'objectif de ce travail de thèse vise à étudier la conversion de la lignine dans des conditions oxydantes hydrothermales, par catalyse hétérogène. La lignine est l'une des principales constituantes des matériaux ligno-cellulosiques. Considérée comme déchet des procédés de valorisation de la cellulose, elle est majoritairement brûlée pour produire de l'énergie. De par sa structure de polymère phénolique, la lignine peut être considérée comme la principale source de noyaux aromatiques. Une méthodologie analytique complexe a, dans un premier temps, été mise en place pour permettre une caractérisation poussée des lignines et produits d'oxydation. Les lignines étudiées ont été extraites à partir de la paille par un procédé organosolv. Le procédé d'extraction influe sur les rendements mais aussi sur les structures et propriétés des différents produits. Les catalyseurs d'oxydation sont des oxydes divisés des métaux de transition, synthétisés par voie alginate. L'oxydation de la vanilline, composé modèle de la lignine, met en évidence des phénomènes d'oligomérisation des produits formés. Lors de l'oxydation des lignines, l'utilisation d'un catalyseur augmente les rendements et modifie les équilibres de dépolymérisation – oligomérisation. / The objective of this thesis is to study the conversion of lignin in oxidizing hydrothermal conditions, by heterogeneous catalysis. Lignin is among the main constituents of lignocellulose materials. Being considered like a waste of the cellulose valorization procedures, it is mostly burned to produce the energy. Taking into account its phenolic polymer structure, lignin can be considered as the main source of aromatic rings. Complex analytical methodology has initially been set up to allow a thorough characterization of lignins and oxidation products. Lignins were extracted from the straw by the organosolv procedure. The extraction process affects not only yields but also the structures and properties of products. The oxidation catalysts are transition metal oxides, synthesized by an alginate route. The oxidation of vanillin (lignin's model compound) shows the oligomerization phenomena of obtained products. In the oxidation of lignin, the use of a catalyst increases the yield and modifies the equilibrium of depolymerization - oligomerization.
36

Production of bioethanol from wheat straw hydrolysate using reverse membrane bioreactor (rMBR) / Bioetanol produktion från vetehalm hydrolysat med användning av omvänd membranbioreaktor

Khin San, Jessica January 2018 (has links)
The second-generation bioethanol production in which lignocellulosic material is used as feedstock faces some difficulties. Lignocellulosic materials have to be pretreated prior to fermentation. In the pretreatment stages several inhibitory compounds, which can negatively affect the metabolic and physiologic activity of the microorganism used, Saccharomyces cerevisiae, are released. Moreover, wild strains of Saccharomyces cerevisiae cannot co-utilize the hexose and pentose saccharides present in the lignocellulosic substrate. In this study, reverse membrane bioreactor (rMBR) was applied to address the difficulties faced in the secondgeneration ethanol production. Semi-synthetic medium and pretreated wheat straw slurry containing different level of glucose, xylose and inhibitor concentrations were fermented in rMBR using genetically-modified xylose-consuming S. cerevisiae. The diffusion rate of different substrates and metabolites during fermentation were measured and analyzed. The results showed that the application of rMBR facilitated simultaneous utilization of hexose and pentose sugars and enhanced the cell tolerance of the inhibitor present in the medium.
37

Matematičko modelovanje sagorevanja pšenične slame u nepokretnom sloju sa aspekta uticaja promene parametara procesa / Mathematical modeling of wheat straw combustion in a fixed bed from theaspect of the influence of process parameters change

Čepić Zoran 19 March 2018 (has links)
<p>Cilj doktorske disertacije je da poveže teorijska znanja iz oblasti<br />matematičkog modelovanja sa eksperimentalnim ispitivanjem<br />sagorevanja pšenične slame u nepokretnom sloju, u cilju formiranja<br />matematičkog modela koji će kroz računarske simulacije omogućiti<br />analizu uticaja radnih parametara (gustine sloja, količine vazduha za<br />sagorevanje) na odvijanje procesa sagorevanja, odnosno određivanje<br />brzine sagorevanja, temperaturskog profila u sloju i koncentracije<br />pojedinih gasova u sloju.<br />Takođe, kroz eksperimentalna merenja, osim validacije modela,<br />urađena je analiza i opisivanje pojava i fenomena koji se odvijaju pri<br />sagorevanju pšenične slame u nepokretnom sloju.</p> / <p>The goal of doctoral dissertation is to bring together theoretical knowledge in<br />the field of mathematical modelling and experimental investigation of wheat<br />straw combustion in fixed bed, with the aim of developing a mathematical<br />model which will, through computer simulation, enable the analysis of effects<br />of operational parameters (bed density, amount of combustion air) on the<br />combustion process, as well as the determination of burning rate, bed<br />temperature profile and concentration of certain gases in the bed.<br />Also, through experimental measurements, in addition to validating the<br />mathematical model, the analysis and description of the phenomena that<br />occurre during the combustion of wheat straw in a fixed bed, was performed.</p>
38

Nylon-6/Agricultural Filler Composites

Amintowlieh, Yasaman January 2010 (has links)
Preparation of thermoplastics composites using engineering thermoplastics and plant fibers or fillers is a technical challenge because the processing temperature of the thermoplastics is generally above the temperature of degradation of plant fibers of fillers. There have been numerous attempts for processing high melting point engineering thermoplastics like Nylon-6 with plant natural fibers and fillers. Low temperature processing methods, fiber modification or addition of additives which drops polymer melting point are some of proposed solutions for this problem. The objective of this thesis was to develop a formulation using wheat straw (WS) as a reinforcing fiber for Nylon-6. The concentration of WS was 15 wt-%. The thermoplastic composites were prepared by mixing grinded wheat straw and Nylon-6 using a laboratory scale twin-screw extruder; follow by preparation of samples using injection moulding. The strategy investigated in this thesis was utilization of additives to lower the melting point or to decrease the viscosity of Nylon-6. Lithium chloride salt (LiCl) and N-Butyl benzene Sulfon amide plasticizer (N-BBSA) were used as process additives to decrease melting point and to reduce the processing temperature and time. The addition of the wheat straw (15 wt-%) to the Nylon-6 increased modulus by 26.9 % but decreased the strength by 9.9 %. Effect of different level of these two additives on mechanical, thermal, physical properties and processability of the composite runs were studied. Addition of 4 wt-% LiCl was found to decrease the melting point from 222 °C to 191 °C, to increase modulus by 14 % in comparison to Nylon-6/wheat straw (15 wt-%). However, it decreased the processability and strength by 12.7 %. Plasticizer was investigated to easing processability and decreasing the degradation by reducing the residence time in the extruder, it does not affect the melting point of Nylon-6. The addition of 4 wt-% of plasticizer (N-BBSA) increased modulus and strength only by 2.6 % and 3 %, respectively, in comparison to Nylon-6/wheat straw (15 wt-%) composites. The results of mechanical properties were used as a benchmark for comparisons among samples with different formulations (levels of additives) to find out levels of LiCl and N-BBSA for the best mechanical properties. It was found that samples with 2 wt-% LiCl and 2 wt-% of N-BBSA had 29.3 % higher tensile modulus than neat Nylon-6, while its strength was almost same as neat Nylon-6 and 6.3 % higher than Nylon-6/WS (15 wt-%). These results were used to correlate the mechanical properties as a function of percentage of salt and plasticizer in the formulation. Differential scanning calorimetry (DSC) was used to evaluate the percentage of crystallinity and the melting point of the thermoplastic phase and thermal gravimetric analysis (TGA) was used to measure the thermal stability of different formulation. The kinetics of crystallization and degradation were evaluated using results from DSC and TGA, respectively. The activation energy for thermal degradation and the percentage of crystallinity of the thermoplastic composites were correlated to mechanical properties using linear regression. It was found that fiber degradation had a significant effect on strength but the effects of percentage of crystallinity on composites strength were insignificant. On the other hand, the percentage of crystallinity affects stiffness and impact strength. The ductility was a function of both crystallinity and thermal stability.
39

Nylon-6/Agricultural Filler Composites

Amintowlieh, Yasaman January 2010 (has links)
Preparation of thermoplastics composites using engineering thermoplastics and plant fibers or fillers is a technical challenge because the processing temperature of the thermoplastics is generally above the temperature of degradation of plant fibers of fillers. There have been numerous attempts for processing high melting point engineering thermoplastics like Nylon-6 with plant natural fibers and fillers. Low temperature processing methods, fiber modification or addition of additives which drops polymer melting point are some of proposed solutions for this problem. The objective of this thesis was to develop a formulation using wheat straw (WS) as a reinforcing fiber for Nylon-6. The concentration of WS was 15 wt-%. The thermoplastic composites were prepared by mixing grinded wheat straw and Nylon-6 using a laboratory scale twin-screw extruder; follow by preparation of samples using injection moulding. The strategy investigated in this thesis was utilization of additives to lower the melting point or to decrease the viscosity of Nylon-6. Lithium chloride salt (LiCl) and N-Butyl benzene Sulfon amide plasticizer (N-BBSA) were used as process additives to decrease melting point and to reduce the processing temperature and time. The addition of the wheat straw (15 wt-%) to the Nylon-6 increased modulus by 26.9 % but decreased the strength by 9.9 %. Effect of different level of these two additives on mechanical, thermal, physical properties and processability of the composite runs were studied. Addition of 4 wt-% LiCl was found to decrease the melting point from 222 °C to 191 °C, to increase modulus by 14 % in comparison to Nylon-6/wheat straw (15 wt-%). However, it decreased the processability and strength by 12.7 %. Plasticizer was investigated to easing processability and decreasing the degradation by reducing the residence time in the extruder, it does not affect the melting point of Nylon-6. The addition of 4 wt-% of plasticizer (N-BBSA) increased modulus and strength only by 2.6 % and 3 %, respectively, in comparison to Nylon-6/wheat straw (15 wt-%) composites. The results of mechanical properties were used as a benchmark for comparisons among samples with different formulations (levels of additives) to find out levels of LiCl and N-BBSA for the best mechanical properties. It was found that samples with 2 wt-% LiCl and 2 wt-% of N-BBSA had 29.3 % higher tensile modulus than neat Nylon-6, while its strength was almost same as neat Nylon-6 and 6.3 % higher than Nylon-6/WS (15 wt-%). These results were used to correlate the mechanical properties as a function of percentage of salt and plasticizer in the formulation. Differential scanning calorimetry (DSC) was used to evaluate the percentage of crystallinity and the melting point of the thermoplastic phase and thermal gravimetric analysis (TGA) was used to measure the thermal stability of different formulation. The kinetics of crystallization and degradation were evaluated using results from DSC and TGA, respectively. The activation energy for thermal degradation and the percentage of crystallinity of the thermoplastic composites were correlated to mechanical properties using linear regression. It was found that fiber degradation had a significant effect on strength but the effects of percentage of crystallinity on composites strength were insignificant. On the other hand, the percentage of crystallinity affects stiffness and impact strength. The ductility was a function of both crystallinity and thermal stability.
40

Création d'enzymes multimodulaires à façon dédiées à la dégradation de substrats complexes / Non communiqué

Badruna, Louise 27 November 2017 (has links)
Pour réduire notre empreinte carbone sur l’environnement, il est urgent de développer des procédés industriels utilisant une source de carbone renouvelable comme la biomasse lignocellulosique. La paroi cellulaire végétale est un enchevêtrement complexe de cellulose, d’hémicelluloses et de lignines. Elle résiste aux attaques biologiques et chimiques mais limite le développement d’une bioéconomie responsable. Dans la Nature, des enzymes multimodulaires produites par certains microorganismes peuvent la déconstruire. Toutefois, ces enzymes sont majoritairement étudiées sur des substrats artificiels ou purifiés. Dans cette thèse, nous proposons de les étudier sur des substrats broyés puis des coupes de paille de blé brutes. Les enzymes multimodulaires sont préparées à façon en utilisant la propriété d’association covalente des protéines Jo et In. Nous avons ainsi associé la xylanase NpXyn11A de N. patriciarum avec deux modules non catalytiques : le CBM3a de C. thermocellum ou le CBM2b1 C. fimi ciblant la cellulose ou les xylanes respectivement. Les propriétés biochimiques de ces protéines chimériques ont été comparées aux modules sauvages. L’activité enzymatique des protéines chimériques a ensuite été étudiée sur des substrats solubles, jusqu’à des substrats insolubles comme le son et la paille de blé, notamment par immunocytochimie. Ce travail a mis en évidence l’importance de la relation enzymes/substrats pour une caractérisation in muro d’activité enzymatique et une meilleure compréhension de la déconstruction de la biomasse végétale. / In order to reduce our carbon footprint on the environment, it is more than urgent to develop new industrial process using a renewable carbon source such as lignocellulosic biomass. Plant cell walls consist of a complex network of cellulose, hemicelluloses and lignins that cross-link with each other mainly via non-covalent bonds. It is thus hardly surprising that plant biomass is rather recalcitrant to chemical or biological degradation. In the present era marked by the desire to build a green bioeconomy, this recalcitrance remains a key point. In Nature, the plant-based organic carbon contained within plant cell walls is mainly recycled by the action of cellulolytic microorganisms, producing multimodular enzymes. However, these enzymes are mainly characterized on artificial or purified substrates. In this thesis, we proposed to study multimodular enzymes on raw substrates such as wheat straw sections. The studied multimodular enzymes were associated thanks to the use of two small proteins Jo and In. Thus, we associated the xylanase NpXyn11A from N. patriciarum with two non-catalytic modules: CBM3a from C. thermocellum or CBM2b1 from C. fimi targeting cellulose or xylans respectively. Biochemical properties of these chimeric proteins and wild-type modules have been compared. The enzymatic activity of chimeric proteins has been studied on soluble substrates and compared to the activity on insoluble substrates, mainly by immunocytochemistry. This work highlighted the importance of the relationship enzymes/substrates and its key role to better understand the biomass deconstruction in muro.

Page generated in 0.0649 seconds